高数习题7.3(上)

计算下列三重积分

  1. ∭ Ω ( z + z 2 ) d V \iiint_{\Omega}(z+z^2)dV Ω(z+z2)dV,其中 Ω \Omega Ω为单位球: x 2 + y 2 + z 2 ≤ 1. x^2+y^2+z^2\leq1. x2+y2+z21.
    解:
    因为 Ω \Omega Ω关于 x O y xOy xOy面对称,所以 ∭ Ω z d V = 0 \iiint_{\Omega}zdV=0 ΩzdV=0
    ∭ Ω ( z + z 2 ) d V = ∭ Ω z 2 d V = ∫ 0 1 d ρ ∫ 0 π d φ ∫ 0 2 π d θ ρ 2 c o s 2 φ ρ 2 s i n φ = − 2 π 5 ∫ 0 π c o s 2 φ d c o s φ = − 2 π 5 ( 1 3 c o s 3 φ ∣ 0 π ) = 4 π 15 \begin{aligned} \iiint_{\Omega}(z+z^2)dV &= \iiint_{\Omega}z^2dV\\ &=\int_0^1d\rho\int_0^\pi d\varphi\int_0^{2\pi}d\theta\rho^2cos^2\varphi\rho^2sin\varphi\\ &=-\frac{2\pi}{5}\int_0^\pi cos^2\varphi dcos\varphi\\ &=-\frac{2\pi}{5}(\frac{1}{3}cos^3\varphi|_0^\pi)\\ &=\frac{4\pi}{15} \end{aligned} Ω(z+z2)dV=Ωz2dV=01dρ0πdφ02πdθρ2cos2φρ2sinφ=52π0πcos2φdcosφ=52π(31cos3φ0π)=154π
  2. ∭ Ω x 2 y 2 z d V \iiint_{\Omega}x^2y^2zdV Ωx2y2zdV,其中 Ω \Omega Ω是由 2 z = x 2 + y 2 , z = 2 2z=x^2+y^2,z=2 2z=x2+y2,z=2所围成的区域.
    解:
    ∭ Ω x 2 y 2 z d V = ∫ 0 2 d z ∫ 0 2 π d θ ∫ 0 2 z r 2 s i n 2 θ r 2 c o s 2 θ z r d r = ∫ 0 2 4 z 4 3 d z ∫ 0 2 π 1 − c o s 4 θ 8 d θ = 16 15 ( θ − s i n 4 θ 4 ) ∣ 0 2 π = 32 π 15 \begin{aligned} \iiint_{\Omega}x^2y^2zdV &= \int_0^2dz\int_0^{2\pi}d\theta\int_0^{\sqrt{2z}}r^2sin^2\theta r^2cos^2\theta zrdr\\ &=\int_0^2\frac{4z^4}{3}dz\int_0^{2\pi}\frac{1-cos4\theta}{8} d\theta\\ &=\frac{16}{15}(\theta-\frac{sin4\theta}{4})|_0^{2\pi}\\ &=\frac{32\pi}{15} \end{aligned} Ωx2y2zdV=02dz02πdθ02z r2sin2θr2cos2θzrdr=0234z4dz02π81cos4θdθ=1516(θ4sin4θ)02π=1532π
  3. ∭ Ω x 2 s i n x d x d y d z \iiint_{\Omega}x^2sinxdxdydz Ωx2sinxdxdydz,其中 Ω \Omega Ω是由平面 z = 0 , y + z = 1 z=0,y+z=1 z=0,y+z=1及柱面 y = x 2 y=x^2 y=x2所围成的区域.
    解:因为 Ω \Omega Ω关于 y O z yOz yOz面对称,所以 ∭ Ω x 2 s i n x d V = 0 \iiint_{\Omega}x^2sinxdV=0 Ωx2sinxdV=0
  4. ∭ Ω z d x d y d z \iiint_{\Omega}zdxdydz Ωzdxdydz,其中 Ω \Omega Ω是由 x 2 + y 2 = 4 , z = x 2 + y 2 x^2+y^2=4,z=x^2+y^2 x2+y2=4,z=x2+y2 z = 0 z=0 z=0所围.
    解:
    ∭ Ω z d x d y d z = ∫ 0 4 d z ∫ 0 2 π d θ ∫ z 2 z r d r = π ∫ 0 4 z ( 4 − z ) d z = 32 π 3 \begin{aligned} \iiint_{\Omega}zdxdydz &= \int_0^4dz\int_0^{2\pi}d\theta\int_{\sqrt{z}}^2zr dr\\ &=\pi\int_0^4z(4-z)dz\\ &=\frac{32\pi}{3} \end{aligned} Ωzdxdydz=04dz02πdθz 2zrdr=π04z(4z)dz=332π
  5. ∭ Ω ( x 2 − y 2 − z 2 ) d V \iiint_{\Omega}(x^2-y^2-z^2)dV Ω(x2y2z2)dV Ω : x 2 + y 2 + z 2 ≤ a 2 . \Omega:x^2+y^2+z^2\leq a^2. Ω:x2+y2+z2a2.
    解:
    利用轮换对称性:
    ∭ Ω x 2 d V = ∭ Ω y 2 d V = ∭ Ω z 2 d V \iiint_{\Omega}x^2dV=\iiint_{\Omega}y^2dV=\iiint_{\Omega}z^2dV Ωx2dV=Ωy2dV=Ωz2dV
    ∭ Ω ( x 2 − y 2 − z 2 ) d V = − ∭ Ω z 2 d V = − ∫ 0 a d ρ ∫ 0 π d φ ∫ 0 2 π d θ ρ 2 c o s 2 φ ρ 2 s i n φ = 2 a 5 π 5 ∫ 0 π c o s 2 φ d c o s φ = 2 a 5 π 5 ( 1 3 c o s 3 φ ∣ 0 π ) = − 4 a 5 15 π \begin{aligned} \iiint_{\Omega}(x^2-y^2-z^2)dV &=-\iiint_{\Omega}z^2dV\\ &=-\int_0^ad\rho\int_0^\pi d\varphi\int_0^{2\pi}d\theta\rho^2cos^2\varphi\rho^2sin\varphi\\ &=\frac{2a^5\pi}{5}\int_0^\pi cos^2\varphi dcos\varphi\\ &=\frac{2a^5\pi}{5}(\frac{1}{3}cos^3\varphi|_0^\pi)\\ &=-\frac{4a^5}{15}\pi \end{aligned} Ω(x2y2z2)dV=Ωz2dV=0adρ0πdφ02πdθρ2cos2φρ2sinφ=52a5π0πcos2φdcosφ=52a5π(31cos3φ0π)=154a5π
  6. ∭ Ω ( x 2 + y 2 ) d V \iiint_{\Omega}(x^2+y^2)dV Ω(x2+y2)dV Ω : 3 x 2 + y 2 ≤ z ≤ 3. \Omega:3\sqrt{x^2+y^2}\leq z\leq3. Ω:3x2+y2 z3.
    解:
    ∭ Ω ( x 2 + y 2 ) d V = ∫ 0 3 d z ∫ 0 2 π d θ ∫ 0 z 3 r 2 r d r = 2 π ∫ 0 3 z 4 3 4 ⋅ 4 d z = 3 10 π \begin{aligned} \iiint_{\Omega}(x^2+y^2)dV &= \int_0^3dz\int_0^{2\pi}d\theta\int_0^{\frac{z}{3}}r^2rdr\\ &=2\pi\int_0^3\frac{z^4}{3^4\cdot4}dz\\ &=\frac{3}{10}\pi \end{aligned} Ω(x2+y2)dV=03dz02πdθ03zr2rdr=2π03344z4dz=103π
  7. ∭ Ω ( y 2 + z 2 ) d V \iiint_{\Omega}(y^2+z^2)dV Ω(y2+z2)dV Ω : 0 ≤ a 2 ≤ x 2 + y 2 + z 2 ≤ b 2 . \Omega:0\leq a^2\leq x^2+y^2+z^2\leq b^2. Ω:0a2x2+y2+z2b2.
    解:
    利用轮换对称性:
    ∭ Ω x 2 d V = ∭ Ω y 2 d V = ∭ Ω z 2 d V \iiint_{\Omega}x^2dV=\iiint_{\Omega}y^2dV=\iiint_{\Omega}z^2dV Ωx2dV=Ωy2dV=Ωz2dV
    ∭ Ω ( y 2 + z 2 ) d V = 2 ∭ Ω z 2 d V = 2 ∫ a b d ρ ∫ 0 π d φ ∫ 0 2 π d θ ρ 2 c o s 2 φ ρ 2 s i n φ = 4 ( a 5 − b 5 ) π 5 ∫ 0 π c o s 2 φ d c o s φ = 4 ( a 5 − b 5 ) π 5 ( 1 3 c o s 3 φ ∣ 0 π ) = 8 π 15 ( b 5 − a 5 ) \begin{aligned} \iiint_{\Omega}(y^2+z^2)dV &=2\iiint_{\Omega}z^2dV\\ &=2\int_a^bd\rho\int_0^\pi d\varphi\int_0^{2\pi}d\theta\rho^2cos^2\varphi\rho^2sin\varphi\\ &=\frac{4(a^5-b^5)\pi}{5}\int_0^\pi cos^2\varphi dcos\varphi\\ &=\frac{4(a^5-b^5)\pi}{5}(\frac{1}{3}cos^3\varphi|_0^\pi)\\ &=\frac{8\pi}{15}(b^5-a^5) \end{aligned} Ω(y2+z2)dV=2Ωz2dV=2abdρ0πdφ02πdθρ2cos2φρ2sinφ=54(a5b5)π0πcos2φdcosφ=54(a5b5)π(31cos3φ0π)=158π(b5a5)
  8. ∭ Ω ( x 2 + z 2 ) d V \iiint_{\Omega}(x^2+z^2)dV Ω(x2+z2)dV Ω : x 2 + y 2 ≤ z ≤ 1. \Omega:x^2+y^2\leq z\leq1. Ω:x2+y2z1.
    解:
    ∭ Ω ( x 2 + z 2 ) d V = ∫ 0 1 d z ∫ 0 2 π d θ ∫ 0 z ( r 2 c o s 2 θ + z 2 ) r d r = ∫ 0 1 d z ∫ 0 2 π d θ ( z 2 4 c o s 2 θ + z 3 2 ) = ∫ 0 2 π d θ ( 1 12 c o s 2 θ + 1 8 ) = π 3 \begin{aligned} \iiint_{\Omega}(x^2+z^2)dV &= \int_0^1dz\int_0^{2\pi}d\theta\int_0^{\sqrt{z}}(r^2cos^2\theta+z^2)rdr\\ &=\int_0^1dz\int_0^{2\pi}d\theta(\frac{z^2}{4}cos^2\theta+\frac{z^3}{2})\\ &=\int_0^{2\pi}d\theta(\frac{1}{12}cos^2\theta+\frac{1}{8})\\ &=\frac{\pi}{3} \end{aligned} Ω(x2+z2)dV=01dz02πdθ0z (r2cos2θ+z2)rdr=01dz02πdθ(4z2cos2θ+2z3)=02πdθ(121cos2θ+81)=3π
  9. ∭ Ω z 2 d V \iiint_{\Omega}z^2dV Ωz2dV Ω : x 2 + y 2 + z 2 ≤ R 2 , x 2 + y 2 ≤ R x ( R > 0 ) . \Omega:x^2+y^2+z^2\leq R^2,x^2+y^2\leq Rx(R>0). Ω:x2+y2+z2R2,x2+y2Rx(R>0).
    解:
    ∭ Ω z 2 d V = ∫ − π 2 π 2 d θ ∫ 0 R c o s θ r d r ∫ − R 2 − r 2 R 2 − r 2 z 2 d z = 2 3 ∫ − π 2 π 2 d θ ∫ 0 R c o s θ r ( R 2 − r 2 ) 3 d r = 2 R 5 15 ∫ − π 2 π 2 ( 1 − ∣ s i n 5 θ ∣ ) d θ = 2 15 R 5 ( π − 2 ⋅ 4 5 ⋅ 2 3 ) = 2 15 R 5 ( π − 16 15 ) \begin{aligned} \iiint_{\Omega}z^2dV &= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}d\theta\int_0^{Rcos\theta}rdr\int_{-\sqrt{R^2-r^2}}^{\sqrt{R^2-r^2}}z^2dz\\ &=\frac{2}{3}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}d\theta\int_0^{Rcos\theta}r(\sqrt{R^2-r^2})^3dr\\ &=\frac{2R^5}{15}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}(1-|sin^5\theta|) d\theta\\ &=\frac{2}{15}R^5(\pi-2\cdot\frac{4}{5}\cdot\frac{2}{3})\\ &=\frac{2}{15}R^5(\pi-\frac{16}{15}) \end{aligned} Ωz2dV=2π2πdθ0RcosθrdrR2r2 R2r2 z2dz=322π2πdθ0Rcosθr(R2r2 )3dr=152R52π2π(1sin5θ)dθ=152R5(π25432)=152R5(π1516)
  10. ∭ Ω ( 1 + x y + y z + z x ) d V \iiint_{\Omega}(1+xy+yz+zx)dV Ω(1+xy+yz+zx)dV,其中 Ω \Omega Ω由曲面 x 2 + y 2 = 2 z x^2+y^2=2z x2+y2=2z x 2 + y 2 + z 2 = 8 x^2+y^2+z^2=8 x2+y2+z2=8所围且 z ≥ 0 z\geq0 z0的部分.
    解:
    因为 Ω \Omega Ω关于 x O z xOz xOz面对称,所以 ∭ Ω ( x y + y z ) d V = 0 \iiint_{\Omega}(xy+yz)dV=0 Ω(xy+yz)dV=0
    因为 Ω \Omega Ω关于 y O z yOz yOz面对称,所以 ∭ Ω ( x y + z x ) d V = 0 \iiint_{\Omega}(xy+zx)dV=0 Ω(xy+zx)dV=0
    ∭ Ω ( 1 + x y + y z + z x ) d V = ∭ Ω d V = ∫ 0 2 d r ∫ 0 2 π d θ ∫ r 2 2 8 − r 2 r d z = 2 π ∫ 0 2 ( r 8 − r 2 − r 3 2 ) d r = 2 π [ − ( 8 − r 2 ) 3 2 3 − r 4 8 ] ∣ 0 2 = 2 π ( 16 2 3 − 14 3 ) \begin{aligned} \iiint_{\Omega}(1+xy+yz+zx)dV &= \iiint_{\Omega}dV\\ &=\int_0^2dr\int_0^{2\pi} d\theta\int_{\frac{r^2}{2}}^{\sqrt{8-r^2}}r dz\\ &=2\pi\int_0^2(r\sqrt{8-r^2}-\frac{r^3}{2})dr\\ &=2\pi[-\frac{(8-r^2)^{\frac{3}{2}}}{3}-\frac{r^4}{8}]|_0^2\\ &=2\pi(\frac{16\sqrt{2}}{3}-\frac{14}{3}) \end{aligned} Ω(1+xy+yz+zx)dV=ΩdV=02dr02πdθ2r28r2 rdz=2π02(r8r2 2r3)dr=2π[3(8r2)238r4]02=2π(3162 314)
  11. ∭ Ω ( x 2 + y 2 ) d V \iiint_{\Omega}(x^2+y^2)dV Ω(x2+y2)dV Ω \Omega Ω z = R 2 − x 2 − y 2 z=\sqrt{R^2-x^2-y^2} z=R2x2y2 z = x 2 + y 2 z=\sqrt{x^2+y^2} z=x2+y2 所围.
    解:
    ∭ Ω ( x 2 + y 2 ) d V = ∫ 0 2 π d θ ∫ 0 2 R 2 d r ∫ r R 2 − r 2 r 2 ⋅ r d z = 2 π ∫ 0 2 R 2 ( R 2 − r 2 − r ) r 3 d r = 2 π [ − 1 3 r 2 ( R 2 − r 2 ) 3 2 − 2 15 ( R 2 − r 2 ) 5 2 − 1 5 r 5 ] ∣ 0 2 R 2 = π R 5 ( 4 15 − 2 6 ) \begin{aligned} \iiint_{\Omega}(x^2+y^2)dV &= \int_0^{2\pi}d\theta\int_0^{\frac{\sqrt{2}R}{2}}dr\int_{r}^{\sqrt{R^2-r^2}}r^2\cdot rdz\\ &=2\pi\int_0^{\frac{\sqrt{2}R}{2}}(\sqrt{R^2-r^2}-r)r^3dr\\ &=2\pi[-\frac{1}{3}r^2(R^2-r^2)^{\frac{3}{2}}-\frac{2}{15}(R^2-r^2)^{\frac{5}{2}}-\frac{1}{5}r^5]|_0^{\frac{\sqrt{2}R}{2}}\\ &=\pi R^5(\frac{4}{15}-\frac{\sqrt{2}}{6}) \end{aligned} Ω(x2+y2)dV=02πdθ022 RdrrR2r2 r2rdz=2π022 R(R2r2 r)r3dr=2π[31r2(R2r2)23152(R2r2)2551r5]022 R=πR5(15462 )
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Go语言(也称为Golang)是由Google开发的一种静态强类型、编译型的编程语言。它旨在成为一门简单、高效、安全和并发的编程语言,特别适用于构建高性能的服务器和分布式系统。以下是Go语言的一些主要特点和优势: 简洁性:Go语言的语法简单直观,易于学习和使用。它避免了复杂的语法特性,如继承、重载等,转而采用组合和接口来实现代码的复用和扩展。 高性能:Go语言具有出色的性能,可以媲美C和C++。它使用静态类型系统和编译型语言的优势,能够生成高效的机器码。 并发性:Go语言内置了对并发的支持,通过轻量级的goroutine和channel机制,可以轻松实现并发编程。这使得Go语言在构建高性能的服务器和分布式系统时具有天然的优势。 安全性:Go语言具有强大的类型系统和内存管理机制,能够减少运行时错误和内存泄漏等问题。它还支持编译时检查,可以在编译阶段就发现潜在的问题。 标准库:Go语言的标准库非常丰富,包含了大量的实用功能和工具,如网络编程、文件操作、加密解密等。这使得开发者可以更加专注于业务逻辑的实现,而无需花费太多时间在底层功能的实现上。 跨平台:Go语言支持多种操作系统和平台,包括Windows、Linux、macOS等。它使用统一的构建系统(如Go Modules),可以轻松地跨平台编译和运行代码。 开源和社区支持:Go语言是开源的,具有庞大的社区支持和丰富的资源。开发者可以通过社区获取帮助、分享经验和学习资料。 总之,Go语言是一种简单、高效、安全、并发的编程语言,特别适用于构建高性能的服务器和分布式系统。如果你正在寻找一种易于学习和使用的编程语言,并且需要处理大量的并发请求和数据,那么Go语言可能是一个不错的选择。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值