高数习题11.1(下)

  1. 判断下列积分的敛散性:
    (1) ∫ 1 + ∞ d x x 2 + x 4 + 3 3 ; \int_1^{+\infty}\frac{dx}{x^2+\sqrt[3]{x^4+3}}; 1+x2+3x4+3 dx;
    (2) ∫ 2 + ∞ d x 2 x + x 2 + 1 3 + 6 ; \int_2^{+\infty}\frac{dx}{2x+\sqrt[3]{x^2+1}+6}; 2+2x+3x2+1 +6dx;
    (3) ∫ 0 2 d x x 3 + 3 x 4 + x 3 ; \int_0^2\frac{dx}{\sqrt[3]{x}+3\sqrt[4]{x}+x^3}; 023x +34x +x3dx;
    (4) ∫ 0 1 d x 1 − x 4 3 ; \int_0^1\frac{dx}{\sqrt[3]{1-x^4}}; 0131x4 dx;
    (5) ∫ 0 1 s i n x x 3 2 d x ; \int_0^1\frac{sinx}{x^{\frac{3}{2}}}dx; 01x23sinxdx;
    (6) ∫ 0 + ∞ s i n x x d x ; \int_0^{+\infty}\frac{sinx}{x}dx; 0+xsinxdx;
    (7) ∫ 1 + ∞ x α e − x 2 d x ( α > 0 ) ; \int_1^{+\infty}x^\alpha e^{-x^2}dx(\alpha>0); 1+xαex2dx(α>0);
    (8) ∫ 0 1 l n x 1 − x d x ; \int_0^1\frac{lnx}{1-x}dx; 011xlnxdx;
    (9) ∫ 0 π 2 d x s i n 2 x c o s 2 x ; \int_0^{\frac{\pi}{2}}\frac{dx}{sin^2xcos^2x}; 02πsin2xcos2xdx;
    (10) ∫ 0 + ∞ d x x p + x q ( p ≥ 0 , q ≥ 0 ) . \int_0^{+\infty}\frac{dx}{x^p+x^q}(p\geq0,q\geq0). 0+xp+xqdx(p0,q0).
    解:
    (1) lim ⁡ x → + ∞ 1 x 2 + x 4 + 3 3 1 x 2 = 1 \lim_{x\to+\infty}\frac{\frac{1}{x^2+\sqrt[3]{x^4+3}}}{\frac{1}{x^2}}=1 limx+x21x2+3x4+3 1=1,因为积分 ∫ 1 + ∞ d x x 2 \int_1^{+\infty}\frac{dx}{x^2} 1+x2dx收敛,所以积分 ∫ 1 + ∞ d x x 2 + x 4 + 3 3 \int_1^{+\infty}\frac{dx}{x^2+\sqrt[3]{x^4+3}} 1+x2+3x4+3 dx也收敛
    (2) lim ⁡ x → + ∞ 1 2 x + x 2 + 1 3 + 6 1 x = 1 2 \lim_{x\to+\infty}\frac{\frac{1}{2x+\sqrt[3]{x^2+1}+6}}{\frac{1}{x}}=\frac{1}{2} limx+x12x+3x2+1 +61=21,因为积分 ∫ 2 + ∞ d x x \int_2^{+\infty}\frac{dx}{x} 2+xdx发散,所以积分 ∫ 2 + ∞ d x 2 x + x 2 + 1 3 + 6 \int_2^{+\infty}\frac{dx}{2x+\sqrt[3]{x^2+1}+6} 2+2x+3x2+1 +6dx也发散
    (3) lim ⁡ x → 0 1 x 3 + 3 x 4 + x 3 1 x 4 = 1 3 \lim_{x\to0}\frac{\frac{1}{\sqrt[3]{x}+3\sqrt[4]{x}+x^3}}{\frac{1}{\sqrt[4]{x}}}=\frac{1}{3} limx04x 13x +34x +x31=31,因为积分 ∫ 0 2 d x x 4 \int_0^2\frac{dx}{\sqrt[4]{x}} 024x dx收敛,所以积分 ∫ 0 2 d x x 3 + 3 x 4 + x 3 \int_0^2\frac{dx}{\sqrt[3]{x}+3\sqrt[4]{x}+x^3} 023x +34x +x3dx也收敛
    (4) lim ⁡ x → 1 1 1 − x 4 3 1 1 − x 3 = 1 4 3 \lim_{x\to1}\frac{\frac{1}{\sqrt[3]{1-x^4}}}{\frac{1}{\sqrt[3]{1-x}}}=\sqrt[3]{\frac{1}{4}} limx131x 131x4 1=341 ,因为积分 ∫ 0 1 d x 1 − x 3 \int_0^1\frac{dx}{\sqrt[3]{1-x}} 0131x dx收敛,所以积分 ∫ 0 1 d x 1 − x 4 3 \int_0^1\frac{dx}{\sqrt[3]{1-x^4}} 0131x4 dx也收敛
    (5) lim ⁡ x → 0 s i n x x 3 2 1 x 1 2 = 1 \lim_{x\to0}\frac{\frac{sinx}{x^{\frac{3}{2}}}}{\frac{1}{x^{\frac{1}{2}}}}=1 limx0x211x23sinx=1,因为积分 ∫ 0 1 1 x 1 2 d x \int_0^1\frac{1}{x^{\frac{1}{2}}}dx 01x211dx收敛,所以积分 ∫ 0 1 s i n x x 3 2 d x \int_0^1\frac{sinx}{x^{\frac{3}{2}}}dx 01x23sinxdx也收敛
    (6) 当 0 < x ≤ 1 0<x\leq 1 0<x1时, s i n x x < 1 \frac{sinx}{x}<1 xsinx<1,所以 ∫ 0 1 s i n x x d x \int_0^1\frac{sinx}{x}dx 01xsinxdx收敛。因为 ∫ 1 + ∞ s i n x d x \int_1^{+\infty}sinxdx 1+sinxdx有界,且函数 1 x \frac{1}{x} x1单调下降且趋于0,所以积分 ∫ 1 + ∞ s i n x x d x \int_1^{+\infty}\frac{sinx}{x}dx 1+xsinxdx收敛。综上所述 ∫ 0 + ∞ s i n x x d x \int_0^{+\infty}\frac{sinx}{x}dx 0+xsinxdx收敛
    (7) lim ⁡ x → + ∞ x α e − x 2 e − x 2 2 = 0 \lim_{x\to+\infty}\frac{x^\alpha e^{-x^2}}{e^{-\frac{x^2}{2}}}=0 limx+e2x2xαex2=0,因为积分 ∫ 1 + ∞ e − x 2 2 d x \int_1^{+\infty}e^{-\frac{x^2}{2}}dx 1+e2x2dx收敛,所以积分 ∫ 1 + ∞ x α e − x 2 d x \int_1^{+\infty}x^\alpha e^{-x^2}dx 1+xαex2dx也收敛
    (8) lim ⁡ x → 1 l n x 1 − x = − 1 \lim_{x\to1}\frac{lnx}{1-x}=-1 limx11xlnx=1,所以1不是瑕点. lim ⁡ x → 0 l n x 1 − x l n x = 0 \lim_{x\to0}\frac{\frac{lnx}{1-x}}{lnx}=0 limx0lnx1xlnx=0,因为积分 ∫ 0 1 l n x d x = − 1 \int_0^1lnxdx=-1 01lnxdx=1收敛,所以积分 ∫ 0 1 l n x 1 − x d x \int_0^1\frac{lnx}{1-x}dx 011xlnxdx也收敛.
    (9) 0和 π 2 \frac{\pi}{2} 2π都是瑕点, lim ⁡ x → + ∞ 1 s i n 2 x c o s 2 x 1 x 2 = 1 \lim_{x\to+\infty}\frac{\frac{1}{sin^2xcos^2x}}{\frac{1}{x^2}}=1 limx+x21sin2xcos2x1=1,因为积分 ∫ 0 π 2 d x x 2 \int_0^{\frac{\pi}{2}}\frac{dx}{x^2} 02πx2dx发散,所以积分 ∫ 0 π 2 d x s i n 2 x c o s 2 x \int_0^{\frac{\pi}{2}}\frac{dx}{sin^2xcos^2x} 02πsin2xcos2xdx也发散
    (10) 先考虑 ∫ 0 1 d x x p + x q \int_0^1\frac{dx}{x^p+x^q} 01xp+xqdx,不妨设 m i n ( p , q ) = p min(p,q)=p min(p,q)=p lim ⁡ x → + 0 1 x p + x q 1 x p = 1 \lim_{x\to+0}\frac{\frac{1}{x^p+x^q}}{\frac{1}{x^p}}=1 limx+0xp1xp+xq1=1仅当 p < 1 p<1 p<1时收敛,即当 m i n ( p , q ) < 1 min(p,q)<1 min(p,q)<1时收敛。
    再考虑 ∫ 1 + ∞ d x x p + x q \int_1^{+\infty}\frac{dx}{x^p+x^q} 1+xp+xqdx,不妨设 m a x ( p , q ) = q max(p,q)=q max(p,q)=q lim ⁡ x → + ∞ 1 x p + x q 1 x q = 1 \lim_{x\to+\infty}\frac{\frac{1}{x^p+x^q}}{\frac{1}{x^q}}=1 limx+xq1xp+xq1=1仅当 q > 1 q>1 q>1时收敛,即当 m a x ( p , q ) > 1 max(p,q)>1 max(p,q)>1时收敛。
    所以积分 ∫ 0 + ∞ d x x p + x q \int_0^{+\infty}\frac{dx}{x^p+x^q} 0+xp+xqdx仅当 m i n ( p , q ) < 1 min(p,q)<1 min(p,q)<1 m a x ( p , q ) > 1 max(p,q)>1 max(p,q)>1才收敛,其余情况都发散。
  2. 判别下列积分是绝对收敛还是条件收敛:
    (1) ∫ 0 + ∞ x c o s x x + 3 d x ; \int_0^{+\infty}\frac{\sqrt{x}cosx}{x+3}dx; 0+x+3x cosxdx;
    (2) ∫ 1 + ∞ c o s ( 3 x + 2 ) x 3 + 1 x 2 + 1 3 d x . \int_1^{+\infty}\frac{cos(3x+2)}{\sqrt{x^3+1}\sqrt[3]{x^2+1}}dx. 1+x3+1 3x2+1 cos(3x+2)dx.
    解:
    (1) 当n为非负整数的时, ∫ n π ( n + 1 ) π x ∣ c o s x ∣ x + 3 d x ≥ ∫ n π ( n + 1 ) π x ∣ c o s x ∣ ( n + 1 ) π + 3 d x = 2 n π ( n + 1 ) π + 3 \int_{n\pi}^{(n+1)\pi}\frac{\sqrt{x}|cosx|}{x+3}dx\geq\int_{n\pi}^{(n+1)\pi}\frac{\sqrt{x}|cosx|}{(n+1)\pi+3}dx=\frac{2\sqrt{n\pi}}{(n+1)\pi+3} nπ(n+1)πx+3x cosxdxnπ(n+1)π(n+1)π+3x cosxdx=(n+1)π+32nπ ∫ 0 n π x ∣ c o s x ∣ x + 3 d x ≥ ∑ k = 0 n − 1 2 k π ( k + 1 ) π + 3 \int_0^{n\pi}\frac{\sqrt{x}|cosx|}{x+3}dx\geq\sum_{k=0}^{n-1}\frac{2\sqrt{k\pi}}{(k+1)\pi+3} 0nπx+3x cosxdxk=0n1(k+1)π+32kπ .所以积分 ∫ 0 A x ∣ c o s x ∣ x + 3 d x \int_0^A\frac{\sqrt{x}|cosx|}{x+3}dx 0Ax+3x cosxdx无界,原积分不绝对收敛。
    因为 ( x x + 3 ) ′ = 3 − x 2 x ( x + 3 ) 2 (\frac{\sqrt{x}}{x+3})'=\frac{3-x}{2\sqrt{x}(x+3)^2} (x+3x )=2x (x+3)23x,当 x > 3 x>3 x>3时,函数 x x + 3 \frac{\sqrt{x}}{x+3} x+3x 递减,且 lim ⁡ x → + ∞ x x + 3 = 0 \lim_{x\to+\infty}\frac{\sqrt{x}}{x+3}=0 limx+x+3x =0,因为 ∫ 0 + ∞ c o s x d x \int_0^{+\infty}cosxdx 0+cosxdx有界,所以积分 ∫ 0 + ∞ x c o s x x + 3 d x \int_0^{+\infty}\frac{\sqrt{x}cosx}{x+3}dx 0+x+3x cosxdx条件收敛
    (2) 因为 ∣ c o s ( 3 x + 2 ) x 3 + 1 x 2 + 1 3 ∣ ≤ 1 x 3 2 x 2 3 = 1 x 13 6 |\frac{cos(3x+2)}{\sqrt{x^3+1}\sqrt[3]{x^2+1}}|\leq\frac{1}{x^{\frac{3}{2}}x^{\frac{2}{3}}}=\frac{1}{x^{\frac{13}{6}}} x3+1 3x2+1 cos(3x+2)x23x321=x6131,因为积分 ∫ 1 + ∞ 1 x 13 6 d x \int_1^{+\infty}\frac{1}{x^{\frac{13}{6}}}dx 1+x6131dx收敛,所以积分 ∫ 1 + ∞ c o s ( 3 x + 2 ) x 3 + 1 x 2 + 1 3 d x \int_1^{+\infty}\frac{cos(3x+2)}{\sqrt{x^3+1}\sqrt[3]{x^2+1}}dx 1+x3+1 3x2+1 cos(3x+2)dx也收敛
  3. 叙述关于瑕积分的狄利克雷判别法及阿贝尔判别法.
    解:
    (1) 狄利克雷判别法:设函数 f ( x ) , g ( x ) f(x),g(x) f(x),g(x) ( a , b ] (a,b] (a,b]上有定义,且a是它们的瑕点.设存在常数M>0,使得对一切 0 < ε < b − a 0<\varepsilon<b-a 0<ε<ba ∣ ∫ a + ε b f ( x ) d x ∣ ≤ M . |\int_{a+\varepsilon}^bf(x)dx|\leq M. a+εbf(x)dxM.又设函数 g ( x ) g(x) g(x) x → a + 0 x\to a+0 xa+0时单调趋向于0,则瑕积分 ∫ a b f ( x ) g ( x ) d x \int_a^bf(x)g(x)dx abf(x)g(x)dx收敛.
    (2) 阿贝尔判别法:设函数 f ( x ) , g ( x ) f(x),g(x) f(x),g(x) ( a , b ] (a,b] (a,b]上有定义,且a是它们的瑕点.若瑕积分 ∫ a b f ( x ) d x \int_a^bf(x)dx abf(x)dx收敛,且函数 g ( x ) g(x) g(x) ( a , b ] (a,b] (a,b]上单调有界,则瑕积分 ∫ a b f ( x ) g ( x ) d x \int_a^bf(x)g(x)dx abf(x)g(x)dx收敛.
  4. f ( x ) f(x) f(x)定义在 ( a , b ] (a,b] (a,b]上并以a为瑕点.试将瑕积分 ∫ a b f ( x ) d x \int_a^bf(x)dx abf(x)dx通过变量变换而化成无穷积分,并证明瑕积分的收敛性等于该无穷积分的收敛性.
    证明:令 t = 1 x − a t=\frac{1}{x-a} t=xa1,则 x = 1 t + a x=\frac{1}{t}+a x=t1+a ∫ a b f ( x ) d x = ∫ + ∞ 1 b − a − f ( 1 t + a ) t 2 d t = ∫ 1 b − a + ∞ f ( 1 t + a ) t 2 d t \int_a^bf(x)dx=\int_{+\infty}^{\frac{1}{b-a}}-\frac{f(\frac{1}{t}+a)}{t^2}dt=\int_{\frac{1}{b-a}}^{+\infty}\frac{f(\frac{1}{t}+a)}{t^2}dt abf(x)dx=+ba1t2f(t1+a)dt=ba1+t2f(t1+a)dt,证明不会证。。求大佬指教。
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值