MATLAB中DistMesh有限元划分工具

DistMesh - A Simple Mesh Generator in MATLAB
News (Mar 11, 2012)
I have not been maintaining/updating the distmesh code since I wrote it, but by popular request I have now posted a new version. The main differences and new features are:
New 3-D surface mesh generator distmeshsurface.m, type “help distmeshsurface” to see some examples.
Support for general implicit functions in distmesh2d and distmeshsurface. This means e.g. that an ellipse can be represented by the simple expression phi(x,y)=(x/a)2+(y/b)2-1, even if this is not a signed distance function.
Robustness improvements in distmesh2d, including removal of duplicated fix points, density control, and a final mesh cleanup.
Recompiled C-functions for 32/64-bit Windows, 64-bit Mac OS X, and 64-bit linux.
More examples and more consistent size functions in the examples, including a NACA0012 airfoil mesh. Type “help distmesh2d”, run the demo “meshdemo2d”, or just look at the examples further down on this page.
Description
DistMesh is a simple MATLAB code for generation of unstructured triangular and tetrahedral meshes. It was developed by Per-Olof Persson (now at UC Berkeley) and Gilbert Strang in the Department of Mathematics at MIT. A detailed description of the program is provided in our SIAM Review paper, see documentation below.

One reason that the code is short and simple is that the geometries are specified by Signed Distance Functions. These give the shortest distance from any point in space to the boundary of the domain. The sign is negative inside the region and positive outside. A simple example is the unit circle in 2-D, which has the distance function d=r-1, where r is the distance from the origin. For more complicated geometries the distance function can be computed by interpolation between values on a grid, a common representation for level set methods.

For the actual mesh generation, DistMesh uses the Delaunay triangulation routine in MATLAB and tries to optimize the node locations by a force-based smoothing procedure. The topology is regularly updated by Delaunay. The boundary points are only allowed to move tangentially to the boundary by projections using the distance function. This iterative procedure typically results in very well-shaped meshes.

Our aim with this code is simplicity, so that everyone can understand the code and modify it according to their needs. The code is not entirely robust (that is, it might not terminate and return a well-shaped mesh), and it is relatively slow. However, our current research shows that these issues can be resolved in an optimized C++ code, and we believe our simple MATLAB code is important for demonstration of the underlying principles.

To use the code, simply download it from below and run it from MATLAB. For a quick demonstration, type “meshdemo2d” or “meshdemond”. For more details see the documentation.

Download
Download the archive below and unpack. Add this directory to your MATLAB path, or make it the current directory. The code contains some C++ files, and binaries for 32/64-bit Windows, 64-bit Mac OS X, and 64-bit linux are provided, as well as the source code.

DistMesh is distributed under the GNU GPL; see the License and Copyright notice for more information.

Documentation
P.-O. Persson, G. Strang, A Simple Mesh Generator in MATLAB.
SIAM Review, Volume 46 (2), pp. 329-345, June 2004 (PDF)
P.-O. Persson, Mesh Generation for Implicit Geometries.
Ph.D. thesis, Department of Mathematics, MIT, Dec 2004 (PDF)
Function reference
Gallery
Images
Movies
Interactive Java Applets
Applications and Moving Meshes
Examples
% Example: (Uniform Mesh on Unit Circle)
fd=@§ sqrt(sum(p.^2,2))-1;
[p,t]=distmesh2d(fd,@huniform,0.2,[-1,-1;1,1],[]);
在这里插入图片描述

% Example: (Rectangle with circular hole, refined at circle boundary)
fd=@§ ddiff(drectangle(p,-1,1,-1,1),dcircle(p,0,0,0.5));
fh=@§ 0.05+0.3*dcircle(p,0,0,0.5);
[p,t]=distmesh2d(fd,fh,0.05,[-1,-1;1,1],[-1,-1;-1,1;1,-1;1,1]);
在这里插入图片描述

% Example: (Polygon)
pv=[-0.4 -0.5;0.4 -0.2;0.4 -0.7;1.5 -0.4;0.9 0.1;
1.6 0.8;0.5 0.5;0.2 1;0.1 0.4;-0.7 0.7;-0.4 -0.5];
[p,t]=distmesh2d(@dpoly,@huniform,0.1,[-1,-1; 2,1],pv,pv);
在这里插入图片描述

% Example: (Ellipse)
fd=@§ p(:,1).2/22+p(:,2).2/12-1;
[p,t]=distmesh2d(fd,@huniform,0.2,[-2,-1;2,1],[]);
在这里插入图片描述

% Example: (Square, with size function point and line sources)
fd=@§ drectangle(p,0,1,0,1);
fh=@§ min(min(0.01+0.3abs(dcircle(p,0,0,0)), …
0.025+0.3
abs(dpoly(p,[0.3,0.7; 0.7,0.5]))),0.15);
[p,t]=distmesh2d(fd,fh,0.01,[0,0;1,1],[0,0;1,0;0,1;1,1]);
在这里插入图片描述

% Example: (NACA0012 airfoil)
hlead=0.01; htrail=0.04; hmax=2; circx=2; circr=4;
a=.12/.2*[0.2969,-0.1260,-0.3516,0.2843,-0.1036];
在这里插入图片描述

fd=@(p) ddiff(dcircle(p,circx,0,circr),(abs(p(:,2))-polyval([a(5:-1:2),0],p(:,1))).^2-a(1)^2*p(:,1));
fh=@(p) min(min(hlead+0.3*dcircle(p,0,0,0),htrail+0.3*dcircle(p,1,0,0)),hmax);

在这里插入图片描述

fixx=1-htrail*cumsum(1.3.^(0:4)');
fixy=a(1)*sqrt(fixx)+polyval([a(5:-1:2),0],fixx);
fix=[[circx+[-1,1,0,0]*circr; 0,0,circr*[-1,1]]'; 0,0; 1,0; fixx,fixy; fixx,-fixy];
box=[circx-circr,-circr; circx+circr,circr];
h0=min([hlead,htrail,hmax]);

在这里插入图片描述

[p,t]=distmesh2d(fd,fh,h0,box,fix);

% Example: (Uniform Mesh on Unit Sphere)
fd=@§ dsphere(p,0,0,0,1);
[p,t]=distmeshsurface(fd,@huniform,0.2,1.1*[-1,-1,-1;1,1,1]);

% Example: (Graded Mesh on Unit Sphere)
fd=@§ dsphere(p,0,0,0,1);
fh=@§ 0.05+0.5dsphere(p,0,0,1,0);
[p,t]=distmeshsurface(fd,fh,0.15,1.1
[-1,-1,-1;1,1,1]);

% Example: (Uniform Mesh on Torus)
fd=@§ (sum(p.2,2)+.82-.22).2-4*.82*(p(:,1).2+p(:,2).^2);
[p,t]=distmeshsurface(fd,@huniform,0.1,[-1.1,-1.1,-.25;1.1,1.1,.25]);
在这里插入图片描述

% Example: (Uniform Mesh on Ellipsoid)
fd=@§ p(:,1).2/4+p(:,2).2/1+p(:,3).2/1.52-1;
[p,t]=distmeshsurface(fd,@huniform,0.2,[-2.1,-1.1,-1.6; 2.1,1.1,1.6]);

下载链接
http://persson.berkeley.edu/distmesh/distmesh.zip
http://persson.berkeley.edu/distmesh/distmesh_v10.zip

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CAE工作者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值