[论文笔记]BitFit

BitFit是一种参数高效的微调方法,仅修改预训练模型的偏置项,达到与全量微调相当甚至更好的效果。在多种任务上,BitFit表现优秀,且只需存储极少量的参数,方便硬件部署。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引言

今天带来一篇参数高效微调的论文笔记,论文题目为 基于Transformer掩码语言模型简单高效的参数微调。

BitFit,一种稀疏的微调方法,仅修改模型的偏置项(或它们的子集)。对于小到中等规模数据,应用BitFit去微调预训练的BERT模型能达到(有时超过)微调整个模型。对于大规模数据,该方法能与其他稀疏微调方法竞争。

证明了微调主要是暴露由语言建模训练引发的知识,而不是学习新的任务特定的语言知识。

总体介绍

作者提出了一个简单但高效的方法进去微调,有以下优点:

  1. 每个微调的任务仅修改少量参数;
  2. 每个任务修改同样的参数集;
  3. 被修改的参数在整个参数空间中既孤立又局部化的;
  4. 对于少到中等规模数据,修改这些参数能达到全量微调效果,有时甚至还会超越后者;

作者证明了固定网络的大部分参数,仅修改偏置项的参数能达到惊人的效果。如果能允许一些性能上的损失,甚至只需要修改两处偏置项(query和MLP中间的偏置项),这些被改变的参数约占模型中偏置参数的一半,并且仅占所有模型参数的0.04%。

背景知识

理想的情况是希望有一种微调方法具备以下特点:

  1. 能够与完全微调的模型的结果相匹
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

愤怒的可乐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值