大模型内容分享(十一):大模型高效微调(PEFT)方法大全

目录

PEFT分类

PEFT方法效率统计

具体方法具体介绍

3.1 Additive类:Adapters

3.2 Additive类:Soft Prompts

3.3 Selective类

3.4 Reparametrization-based类

3.5 Hybrid类

最后


PEFT分类

 

4ca394530382c20146f22661bb34d060.png

                                                        图1. PEFT分类

如上图1,按是否增加了额外参数,PEFT主要分为:

  • Additive类:在预训练模型基础上增加额外的参数或者网络层,微调训练的时候只训练这些新增的参数或层,包含两个子类:

1)Adapter--在Transformer子层后加入小的全连接层,微调只学习新加的全连接层参数。

2)Soft Prompts--常见的Prompts方法是在输入中构造Prompts模板,如何构造是一门学问,Soft Prompts直接在输入的embedding中加向量作为soft prompts,并对这些向量的参数进行微调,避免构造Prompts模板。

  • Selective类:选择模型中的部分层比如最后几层、或偏置项进行微调。

  • Reparametrization-based类:利用低秩表征(low-rank representations)来最小化可训练的参数,本质上就是认为大量的参数中,仅仅一部分起到关键作用,在这个起关键作用的子空间中去寻找参数进行微调。

  • Hybrid类:混合了多种类别的方法。

PEFT方法效率统计

参数效率(Parameter Efficiency,PE)从广泛的概念讲,包括存储、内存、计算和性能的效率,其中计算效率主要包括微调时反向传播的计算和推理的计算效率。下面是对已收集的方法(论文)从这几个维度进行的统计:

 

7f260f87913e8a4bcc1ac6c6c35c665b.png

                                                                表1. 各种方法的效率统计  

其中,Type表示该方法属于Additive、Selective、Reparametrization-based哪一类,Storage、Memroy表示该方法和全部参数微调比较是否节约了存储、内存。Backprop表示是否减小了反向传播计算开销,Inference overhead表示推理时是否增加了开销,比如常见的增加了全连接层。

### 大规模模型微调中的PEFT方法 参数高效微调(Parameter-Efficient Fine-Tuning, PEFT)是一种旨在减少大规模预训练模型微调过程中所需资源的方法。这种方法通过仅更新少量新增加的参数来实现高效微调过程,而不是重新调整整个网络的所有权重。 #### 方法概述 在传统的全量微调方式下,所有的模型参数都会被更新,这不仅增加了计算成本还可能导致过拟合现象的发生。而采用PEFT策略,则可以显著降低这种风险并提高效率。具体来说,在保持原有大部分结构不变的情况下引入额外模块或机制专门用于捕捉目标任务特性所需的特定变化[^1]。 对于低秩适应(Low-Rank Adaptation, LoRA),这是一种特别有效的PEFT技术。随着r值增大,即增加可训练参数数量时,LoRA的效果会逐渐接近于直接对原始大型语言模型进行全面再训练的结果。然而值得注意的是,即使当r相对较小的时候,LoRA也能够取得相当不错的性能提升效果[^2]。 为了实际应用这些先进的优化算法和技术手段来进行BERT等预训练模型的有效迁移学习任务处理工作之前,需要先安装`transformers`库以获取必要的工具支持: ```bash !pip install transformers ``` 此命令将会下载并配置好Hugging Face提供的Transformers Python包,该软件包内含多种流行的自然语言处理架构及其对应的预训练版本供开发者们快速上手实验使用[^3]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

之乎者也·

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值