[论文笔记]Corrective Retrieval Augmented Generation

引言

今天带来论文Corrective Retrieval Augmented Generation的笔记,这是一篇优化RAG的工作。

大型语言模型(LLMs) inevitable(不可避免)会出现幻觉,因为生成的文本的准确性不能仅仅由其参数化知识来确保。尽管检索增强生成(RAG)是LLMs的一个可行补充,但它严重依赖于检索文档的相关性,这引发了如果检索出现问题模型会如何行为的担忧。

作者提出了纠正式检索增强生成(CRAG)来提高生成的鲁棒性。具体来说,设计了一个轻量级的检索评估器,用于评估针对查询的检索文档的整体质量,根据返回的置信度程度来触发不同的知识检索操作。由于从固定和有限的语料库中检索只能返回次优的文档,因此利用大规模网络搜索作为扩展来增强检索结果。此外,还设计了一个分解-重组算法,用于对检索文档进行选择性关注关键信息并过滤掉其中的无关信息。CRAG是即插即用的,可以与各种基于RAG的方法无缝耦合。

总体介绍

​ 先前的研究引入了检索技术来整合相关知识并增强生成,例如检索增强生成(RAG)。在这个框架中,模型的输入通过在外部知识语料库中检索到的相关文档被前置以增强(RAG)。虽然RAG作为LLMs的一个可行补充,但其有效性取决于检索文档的相关性和准确性。

### RAG 架构的风险及应对措施 RAGRetrieval-Augmented Generation)是一种结合检索和生成的混合模型架构,在自然语言处理领域得到了广泛应用。然而,这种架构也存在一些潜在风险,以下是主要风险及其对应的解决办法: #### 1. 数据质量问题 如果用于构建索引的数据集质量较低,可能会导致检索到的信息不准确或过时。这会直接影响最终生成的结果。 - **应对措施**: 定期更新数据源并实施严格的质量控制流程[^2]。可以采用多轮人工审核机制或者自动化工具检测数据中的错误和偏差。 #### 2. 检索效率低下 尽管高级 RAG 提出了诸如滑动窗口方法、细粒度分割等改进方案,但在大规模语料库上执行高效检索仍然是挑战之一。 - **应对措施**: 使用更先进的向量数据库技术和算法优化检索性能。例如引入近似最近邻搜索(ANN),以及分布式存储解决方案提升查询速度。 #### 3. 泛化能力不足 由于依赖特定领域的训练数据与预定义的知识库,当面对新领域问题时,传统RAG可能表现不佳。 - **应对措施**: 开发自适应版本如 Adaptive-RAG_corrective rag ,允许动态调整权重参数以更好地匹配不同场景需求[^1] 。同时探索跨模态融合技术增强系统的泛化水平。 #### 4. 输出冗长复杂 即使采取了一些手段限制长度,某些情况下仍可能出现过于详细的回复不符合实际应用场合的要求。 - **应对措施**: 结合提示工程技巧设定清晰指令让模型专注于核心要点,并配合截断操作保留最重要部分;另外也可以考虑二次加工环节进一步提炼信息精华[^4]。 ```python def refine_output(response, max_length=50): """ 对响应内容进行裁剪 """ if len(response.split()) > max_length: refined_response = ' '.join(response.split()[:max_length]) + "..." else: refined_response = response return refined_response ``` 以上是从多个角度分析了关于RAG体系结构中存在的隐患状况连同相应的缓解策略介绍完毕。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

愤怒的可乐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值