Corrective RAG:高级RAG新范式

原文地址:Corrective RAG (CRAG)

论文地址:https://arxiv.org/abs/2401.15884

到目前为止,RAG 已成为解决情境学习数据相关性的公认且完善的标准。但是,当检索到不准确的数据时,模型的行为令人担忧。

2024 年 2 月 5 日 

检索质量评估器,就是类似ragas这类框架的配合。

介绍

随着自然语言处理技术的发展,基于检索的生成(Retrieval Augmented Generation,简称RAG)领域不断涌现出创新成果。其中,一种称为代理RAG(Agentic RAG)的前沿进展尤为引人注目,它通过引入分层代理机制来革新RAG的执行方式。这种代理架构允许模型跨越多种文档源,采取层次化、多维度的搜索策略,将来自不同来源的信息融合成一个连贯且精准的答案。

与此同时,众多研究聚焦于检索信息的品质分类及其在生成上下文中的学习效果,以期更好地理解和利用检索到的知识。然而,鉴于检索错误可能导致生成结果的不准确甚至误导性,科研人员提出了纠正性检索增强生成(Corrective Retrieval Augmented Generation,CRAG)这一概念,旨在强化生成过程对检索错误的抵抗力。

CRAG的核心部件之一是一款轻巧高效的检索评估器,它能对针对特定查询所获得的检索文档进行全面质量评估,并基于评估结果产出一个反映文档可信程度的置信度指标。根据这个置信度,系统将有针对性地触发不同的知识检索行动,以确保生成结果的准确性。

考虑到静态和有限规模语料库在信息检索方面的局限性,CRAG巧妙地结合了大规模网络搜索技术,借此拓宽检索视野,增加信息来源的多样性和广度,从而增强检索结果的质量。

为进一步优化检索文档的利用效率,CRAG采用了一种独特的分解-重组算法,该算法首先将检索到的文档解构为关键信息块,随后针对性地筛选重要信息,摒弃无关紧要的细节,最后再将其重新组织成有利于生成过程的结构化知识。

CRAG的设计极具通用性,能够作为即插即用的组件,轻松地与各类基于RAG的生成方法紧密结合。实验证据显示,在涵盖短篇及长篇生成任务的四个代表性数据集上,CRAG的应用均能显著提升原有RAG方法的性能表现,有力证明了其在提高生成系统稳健性和知识利用率方面的卓越成效。

### RAG 架构的风险及应对措施 RAG(Retrieval-Augmented Generation)是一种结合检索和生成的混合模型架构,在自然语言处理领域得到了广泛应用。然而,这种架构也存在一些潜在风险,以下是主要风险及其对应的解决办法: #### 1. 数据质量问题 如果用于构建索引的数据集质量较低,可能会导致检索到的信息不准确或过时。这会直接影响最终生成的结果。 - **应对措施**: 定期更数据源并实施严格的质量控制流程[^2]。可以采用多轮人工审核机制或者自动化工具检测数据中的错误和偏差。 #### 2. 检索效率低下 尽管高级 RAG 提出了诸如滑动窗口方法、细粒度分割等改进方案,但在大规模语料库上执行高效检索仍然是挑战之一。 - **应对措施**: 使用更先进的向量数据库技术和算法优化检索性能。例如引入近似最近邻搜索(ANN),以及分布式存储解决方案提升查询速度。 #### 3. 泛化能力不足 由于依赖特定领域的训练数据与预定义的知识库,当面对领域问题时,传统RAG可能表现不佳。 - **应对措施**: 开发自适应版本如 Adaptive-RAG_corrective rag ,允许动态调整权重参数以更好地匹配不同场景需求[^1] 。同时探索跨模态融合技术增强系统的泛化水平。 #### 4. 输出冗长复杂 即使采取了一些手段限制长度,某些情况下仍可能出现过于详细的回复不符合实际应用场合的要求。 - **应对措施**: 结合提示工程技巧设定清晰指令让模型专注于核心要点,并配合截断操作保留最重要部分;另外也可以考虑二次加工环节进一步提炼信息精华[^4]。 ```python def refine_output(response, max_length=50): """ 对响应内容进行裁剪 """ if len(response.split()) > max_length: refined_response = ' '.join(response.split()[:max_length]) + "..." else: refined_response = response return refined_response ``` 以上是从多个角度分析了关于RAG体系结构中存在的隐患状况连同相应的缓解策略介绍完毕。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值