论文地址:https://arxiv.org/abs/2401.15884
到目前为止,RAG 已成为解决情境学习数据相关性的公认且完善的标准。但是,当检索到不准确的数据时,模型的行为令人担忧。
2024 年 2 月 5 日
检索质量评估器,就是类似ragas这类框架的配合。
介绍
随着自然语言处理技术的发展,基于检索的生成(Retrieval Augmented Generation,简称RAG)领域不断涌现出创新成果。其中,一种称为代理RAG(Agentic RAG)的前沿进展尤为引人注目,它通过引入分层代理机制来革新RAG的执行方式。这种代理架构允许模型跨越多种文档源,采取层次化、多维度的搜索策略,将来自不同来源的信息融合成一个连贯且精准的答案。
与此同时,众多研究聚焦于检索信息的品质分类及其在生成上下文中的学习效果,以期更好地理解和利用检索到的知识。然而,鉴于检索错误可能导致生成结果的不准确甚至误导性,科研人员提出了纠正性检索增强生成(Corrective Retrieval Augmented Generation,CRAG)这一概念,旨在强化生成过程对检索错误的抵抗力。
CRAG的核心部件之一是一款轻巧高效的检索评估器,它能对针对特定查询所获得的检索文档进行全面质量评估,并基于评估结果产出一个反映文档可信程度的置信度指标。根据这个置信度,系统将有针对性地触发不同的知识检索行动,以确保生成结果的准确性。
考虑到静态和有限规模语料库在信息检索方面的局限性,CRAG巧妙地结合了大规模网络搜索技术,借此拓宽检索视野,增加信息来源的多样性和广度,从而增强检索结果的质量。
为进一步优化检索文档的利用效率,CRAG采用了一种独特的分解-重组算法,该算法首先将检索到的文档解构为关键信息块,随后针对性地筛选重要信息,摒弃无关紧要的细节,最后再将其重新组织成有利于生成过程的结构化知识。
CRAG的设计极具通用性,能够作为即插即用的组件,轻松地与各类基于RAG的生成方法紧密结合。实验证据显示,在涵盖短篇及长篇生成任务的四个代表性数据集上,CRAG的应用均能显著提升原有RAG方法的性能表现,有力证明了其在提高生成系统稳健性和知识利用率方面的卓越成效。