一、点积(又称“数量积”、“内积”)
1、理论知识
在数学中,点积的定义为a·b=|a|·|b|cos<a,b> 【注:粗体小写字母表示向量,<a,b>表示向量a,b的夹角,取值范围为[0,π]】。从定义上,我们知道向量的点积得到的是一个数值。而不是向量(这点大家要注意了!要与叉积进行区别)。另外点积中的夹角<a,b>没有顺序可言,即<a,b>=<b,a>(或a·b=b·a)。所以我们可以通过点积得到两个向量之间的夹角。<a,b>= arccos(a·b / (|a|·|b|))。并且通过点积的正负值,我们可以判断两个向量的方向关系。如果为正,即>0,他们夹角为(0,π/2)。如果为负,夹角为(π/2,π)。
2、Unity3D中应用
在Unity中,点积表示为Vector3.Dot(Vector3,Vector3):float——参数为2个向量,返回值为浮点型。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
|
using UnityEngine;
using System.Collections;
public class Vector3_Dot : MonoBehaviour {
//向量a
Vector3 a;
//向量b
Vector3 b;
void Start()
{
//向量的初始化
a =
new
Vector3(3, 0, 0);
//x轴方向,长度为3
b =
new
Vector3(Mathf.Sqrt(2), Mathf.Sqrt(2), 0);
//(根号2,根号2,0)
}
void OnGUI()
{
//点积的返回值
float c=Vector3.Dot(a,b);
//向量a,b的夹角,得到的值为弧度,我们将其转换为角度,便于查看!
float angle=Mathf.Acos( Vector3.Dot(a.normalized,b.normalized))*Mathf.Rad2Deg;
GUILayout.Label(
"向量a,b的点积为:"
+ c);
GUILayout.Label(
"向量a,b的夹角为:"
+ angle);
}
}
|
a.normalized表示该方向的单位向量,即方向与向量a相同,长度为1的向量。Mathf.Acos()即数学中的arccos()函数。Mathf.Rad2Deg表示将弧度转化为角度。
结果如下图:
二、叉积(又称“向量积”、“外积”)
1、理论知识
数学上的定义:c=axb【注:粗体小写字母表示向量】其中a,b,c均为向量。即两个向量的叉积得到的还是向量!
性质1:c⊥a,c⊥b,即向量c垂直与向量a,b所在的平面。
性质2:模长|c|=|a||b|sin<a,b>
性质3:满足右手法则。从这点我们有axb ≠ bxa,而axb = - bxa。所以我们可以使用叉积的正负值来判断向量a,b的相对位置,即向量b是处于向量a的顺时针方向还是逆时针方向。
2、Unity中应用
在Unity中,叉积表示为Vector3.Cross(Vector3,Vector3):Vector3——参数为2个向量,返回值也为向量。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
|
using UnityEngine;
using System.Collections;
public class Vector3_Cross : MonoBehaviour {
//向量a
Vector3 a;
//向量b
Vector3 b;
void Start()
{
//向量的初始化
a =
new
Vector3(3, 0, 0);
//x轴方向,长度为3
b =
new
Vector3(0, 4, 0);
//y轴方向,长度为4
}
void OnGUI()
{
//叉积的返回值
Vector3 c = Vector3.Cross(a, b);
Vector3 d = Vector3.Cross(b, a);
//向量a,b的夹角,得到的值为弧度,我们将其转换为角度,便于查看!
float angle = Mathf.Asin(Vector3.Distance(Vector3.zero, Vector3.Cross(a.normalized, b.normalized))) * Mathf.Rad2Deg;
GUILayout.Label(
"向量axb为:"
+ c);
GUILayout.Label(
"向量bxa为:"
+ d);
GUILayout.Label(
"向量a,b的夹角为:"
+ angle);
}
}
|
Vector3.Distance()用于计算2个Vector3的距离,在这里我们可以得到叉积向量的模长。
结果如下图: