
恶劣天气目标检测论文
文章平均质量分 63
恶劣天气目标检测论文
zhSunw
XMU-ai硕博连读,北京中关村学院联合培养。研究方向:具身感知、三维目标检测
一作共发表AAAI2024,AAAI2025oral,CVPR2025、合作发表3篇CVPR,1篇ECCV。
欢迎交流~
谷歌学术主页:https://scholar.google.es/citations?user=yiypcAgAAAAJ&hl=zh-CN
展开
-
【ICASSP 2023】ST-MVDNET++论文阅读分析与总结
主要是数据增强的提点方式。并不能带来idea启发,但对模型性能有帮助。原创 2023-09-14 01:32:50 · 610 阅读 · 1 评论 -
【CVPR2022】ST-MVDNet:Modality-Agnostic Learning for Radar-Lidar Fusion in Vehicle Detection论文阅读分析与总结
而直接屏蔽一个输入流的强数据增强,将使模型依赖于一个清晰的蒸汽而忽略缺失的流,直接随机缺失传感器训练的模型不能有效地融合两个传感器的两个特征。学生模型接受激光雷达数据雾化增强、强缺失雷达增强和强缺失激光雷达增强,使用Mean teachers,定义一致性损失与强增强损失知识蒸馏学习,使一个缺失传感器的学生模型获得与清晰传感器教师模型一致的输出。通过强制学生单一清晰模态的预测结果靠近两种清晰模态教师的预测结果,训练模型从缺失的模态中恢复特征以生成更好的检测,而不是学习模态之间独立预测。原创 2023-09-14 01:29:44 · 318 阅读 · 0 评论 -
【CVPR2021】MVDNet论文阅读分析与总结
再用RoI在2*H个特征图中进行RoI Pooling得到2*H*C*W*L RoI特征图,两个传感器的特征图进行Self Attention和Cross Attention后按时间维度concat起来进行refinement。利用最先进的成像雷达,其分辨率比RadarNet和LiRaNet中使用的分辨率要细得多,提出了一种有效的深度后期融合方法来结合雷达和激光雷达信号。(同步ORR数据集中雷达和激光雷达,扫描频率不同)对于一个radar,收集连续N=5帧的lidar,从这5帧lidar中,选择属于。原创 2023-09-14 01:27:35 · 644 阅读 · 0 评论 -
【CVPR2020】DEF:Seeing Through Fog Without Seeing Fog论文阅读分析与总结
偏离了最近的BEV投影方案或原始点云输入,因为BeV投影或点云输入不允许深度早期融合,因为他们在早期层中的特征表示本质上与相机特征不同。使用修改后的VGG网络,conv4-10作为RPN网络输入为每个特征交换块提供传感器熵,根据可用信息单独缩放每个传感器的连接特征。熵低的区域可以衰减,而熵丰富的区域可以在特征提取中被放大。这样做可以自适应地融合特征提取堆栈本身中的特征。原创 2023-09-14 01:25:09 · 624 阅读 · 0 评论 -
ICCV:SPG论文理解
ICCV:SPG论文理解原创 2022-10-27 00:54:15 · 782 阅读 · 0 评论 -
ST3D++: Denoised Self-training for Unsupervised Domain Adaptation on 3D Object Detection
ST3D++: Denoised Self-training for Unsupervised Domain Adaptation on 3D Object Detection原创 2022-10-06 12:42:05 · 1093 阅读 · 0 评论 -
CVPR2021:ST3D——Self-training for Unsupervised Domain Adaptation on 3D Object Detection详解
CVPR2021:ST3D——Self-training for Unsupervised Domain Adaptation on 3D Object Detection详解原创 2022-10-04 02:51:33 · 1724 阅读 · 0 评论 -
Improved 3D Object Detector Under Snowfall Weather Condition Based on LiDAR Point Cloud
Improved 3D Object Detector Under Snowfall Weather Condition Based on LiDAR Point Cloud原创 2022-09-21 00:55:11 · 248 阅读 · 0 评论 -
一维柏林噪声C#实现版本
一维柏林噪声C#实现版本——网络存在错误的更正原创 2022-08-13 20:24:33 · 6000 阅读 · 0 评论 -
恶劣天气 3D 目标检测数据集收集
恶劣天气 3D 目标检测数据集收集原创 2022-08-09 21:58:55 · 3393 阅读 · 12 评论 -
CVPR2020:Seeing Through Fog Without Seeing Fog
CVPR2020:Seeing Through Fog Without Seeing Fog原创 2022-08-01 19:00:30 · 514 阅读 · 0 评论 -
Rethinking LiDAR Object Detection in adverse weather conditions
在DENSE数据集上进行了充分对比实验,通过实验结果推测出改进网络在恶劣天气条件下检测性能的决定性因素(存疑)原创 2022-07-29 23:51:27 · 424 阅读 · 0 评论 -
LAGRANGIAN FLUID SIMULATION WITH CONTINUOUS CONVOLUTIONS
通过网络实现预测粒子在受环境影响情况下的偏移量,实现更真实的模拟。原创 2022-07-26 18:31:45 · 374 阅读 · 0 评论 -
Reconstruction and Synthesis of Lidar Point Clouds of Spray
Reconstruction and Synthesis of Lidar Point Clouds of Spray原创 2022-07-06 13:41:57 · 614 阅读 · 0 评论 -
LiDAR Snowfall Simulation for Robust 3D Object Detection
(与Fog Simulation on Real LiDAR Point Clouds同一作者流程:1.逐扫描层恢复被校准的激光雷达参数2.根据天气参数采样雪花3.根据雪花、及原目标的距离、反射角度计算每次的反射强度4.对每个反射的强度进行对应相关参数的计算最后得到每个反射的功率5.取最大的功率作为该次反射的最终结果(最强回波)...原创 2022-06-22 00:38:59 · 445 阅读 · 0 评论 -
Pay “Attention” to Adverse Weather
通过局部-全局注意力模块融合相机、门控、激光雷达三个模态的特征,完成“基于天气感知和注意力的三维目标检测”原创 2022-06-22 00:37:37 · 721 阅读 · 0 评论 -
Robust 3D Object Detection in Cold Weather Conditions
Robust 3D Object Detection in Cold Weather Conditions原创 2022-06-16 17:51:59 · 230 阅读 · 0 评论 -
CNN-based Point Cloud De-Noising
CNN-based Lidar Point Cloud De-Noising in Adverse WeatherKey Knowledgeable:Autolabeling for Noise Caused by Rain or Fog根据range image判断各个像素点的distance变化决定像素点是否是雨雾水珠产生的噪声进行数据的标注:为什么可以这样标记噪声:笔者的理解是雨雾噪声往往是空气中弥补的水珠产生的反射,在“Fog Simulation on Real LiDAR .原创 2022-01-24 03:27:18 · 2426 阅读 · 0 评论 -
Waymo数据集使用介绍(waymo-open-dataset)
关于waymo数据集的介绍很多博客都有详细说明了,但是具体有哪些数据?waymo可视化工具如何使用?这些信息又如何读取?浏览了一圈发现寥寥无几,这里简单做个整理,方便读者理解也方便自己以后所需。1. Waymo数据集下载https://waymo.com/open2. Waymo Open Dataset Tutorial去waymo可视化官网进行相关工具的安装与环境配置,这个不多赘述:https://github.com/waymo-research/waymo-open-dataset.git原创 2021-12-29 19:16:33 · 19346 阅读 · 5 评论 -
A feature-supervised generative adversarial network for environmental monitoring during hazy days
A feature-supervised generative adversarial network for environmentalKey Knowledgeable:pair of hazy and clean images使用一对晴雾天气的数据作为输入(用晴朗天气模拟雾天气or用雾天气模拟晴朗天气获得成对数据:本身二者就与真实的有差距,很大程度上取决于模拟的好坏),二者在generator的encoder部分各自编码获得特征后根据feature regularization loss进.原创 2021-12-15 03:06:09 · 2535 阅读 · 0 评论 -
PF-Net&Efficient Deep Learning Approach
Point Cloud GANKey Knowledgeable:Improved GAN-based Point Cloud CompletionCMLP相较于PointNet的MLP,使用如下结构的CMLP成为单个点云的特征提取器,从而最大程度保留原始点云的局部特征.Multi-Resolution Encoder(MRE)下采样获得不同尺度的点云,提升高低层次点云语义信息提取,再通过MLP获得最终特征向量: Point Pyramid Decoder(PPD)采取“.原创 2021-12-15 03:02:29 · 2832 阅读 · 3 评论 -
Point Cloud GAN
Point Cloud GANKey Knowledgeable:Difficulty使用GAN生成点云和生成图像不同的是,常规的边缘分布是没有用的,参考下面的例图,在边缘化(不考虑对象条件θ)的时候信息不足。Counter Example对常规使用GAN建模方法文中举出了反例:u为对象噪声,zi为点集噪声。存在一种情况使得GAN只需要学习对象噪声u与对象θ之间的匹配即可达到纳什均衡,而点集的学习被忽略,使得收敛之后的模型时好时坏。Proposed Method训练一个.原创 2021-12-15 02:55:35 · 1262 阅读 · 0 评论 -
论文浅读:Fog Simulation on Real LiDAR Point Clouds for 3D Object Detection in Adverse Weather
SE-SSDFog Simulation on Real LiDAR Point Clouds for 3D Object Detection in Adverse Weather基本参数:clear-weather下的接收信号功率:Fog-weather下Hard target(真实目标)的接收信号功率:Fog-weather下Soft target(雾反射)的接收信号功率:算法实现:一些解释:第4行第20行雾反射强度峰值与目标反射强度峰值的两种关系:对应12-22的i.原创 2021-12-04 03:00:52 · 2769 阅读 · 0 评论