机器学习系列手记(七):优化算法之L1正则化与稀疏性

优化算法

L1正则化与稀疏性

      稀疏性,说白了就是模型的很多参数是0。这相当于对模型进行了一次特征选择,只留下一些比较重要的特征,提高模型的泛化能力,降低过拟合的可能。在实际应用中,机器学习模型的输入动辄几百上千万维,稀疏性就显得更加重要。下面我们来说说L1正则化使得模型参数具有稀疏性的原理。

      角度一:解空间形状
      在二维的情况下,黄色部分是L2和L1正则化约束后的解空间,绿色的等高线是凸优化问题中目标函数的等高线,见下图。由图可知,L2正则化约束后的解空间是圆形,而L1正则化约束的解空间是多边形。显然,多边形的解空间更容易在尖角处与等高线碰撞出稀疏解。
在这里插入图片描述
      L2正则化相当于为参数定义了一个圆形的解空间,而L1正则化相当于为参数定义了一个菱形的解空间。如果原问题目标函数的最优解不是恰好落在解空间内,那么约束条件下的最优解一定是在解空间的边界上,而L2“棱角分明”的解空间显然更容易与目标函数等高线在角点碰撞,从而产生稀疏解。

      角度二:函数叠加
      第二个角度试图用更直观的图示来解释L1产生稀疏性这一现象。仅考虑一维情况,多维情况是类似的,如下图所示。假设棕线是原始目标函数 的曲线图,显然最小值点在蓝点处,且对应的 w ∗ w^* w 值非0。

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值