机器学习系列手记(八):采样之高斯分布采样

本文介绍了高斯分布采样的几种方法,包括逆变换法、Box-Muller算法、Marsaglia极坐标方法和拒绝采样法。详细探讨了每种方法的步骤和适用场景,强调了在机器学习中高效采样的重要性。
摘要由CSDN通过智能技术生成

采样

高斯分布采样

      首先,假设随机变量 z z z 服从标准正态分布 N ( 0 , 1 ) N(0,1) N(0,1),令
x = σ ⋅ z + μ x=\sigma \cdot z + \mu x=σz+μ
x x x 服从均值为 μ \mu μ、方差为 σ 2 \sigma^{2} σ2的高斯分布 N ( μ , σ 2 ) N(\mu, \sigma^{2}) N(μ,σ2)。因此,任意高斯分布都可以由标准正态分布通过拉伸和平移得到,所以这里只考虑标准正态分布的采样。常见的采样方法有逆变换法、拒绝采样、重要性采样、马尔科夫蒙特卡罗采样法等。具体到高斯分布,采样步骤如下。
      如果直接使用逆变换法,基本操作步骤为:
      (1)产生[0,1]上的均匀分布随机数 μ \mu μ
      (2)令 z = 2 e r f − 1 ( 2 μ − 1 ) z=\sqrt{2}erf^{-1}(2\mu-1) z=2 erf1(2μ1),则 z z z 服从标准正态分布。其中 e r f ( ⋅ ) erf(\cdot) erf() 是高分布斯误差函数,它是标准正态分布的累积函数经过简单平移和拉伸变换后的形式,定义如下
在这里插入图片描述
      上述逆变换法需要求解 e r f ( x ) erf(x) erf(x) 的逆函数,这并不是一个初等函数,没有显示解,计算起来比较麻烦。所以为了避免这种非初等函数的求逆操作,Box-Muller算法提出了如下解决方案:既然单个高斯分布的累积分布函数不好求逆,那么两个独立的高斯分布的联合分布呢?假设 x , y x,y x,y 是两个服从标准正态分布的独立随机变量,它们的联合概率密度为
p ( x , y ) = 1 2 π e − x 2 + y 2 2 p(x,y)=\frac{1}{2π}e^{-\frac{x^2+y^2}{2}} p(x,y)=2π1e2x2+y2
      考虑 ( x , y ) (x,y) (x,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值