【动手学习pytorch笔记】15.批量归一化 BatchNorm(BN)

BatchNorm(BN)

遇到了问题

  • 损失函数在最后,后面的层训练较快

  • 数据输入在最底部

    • 前面的层训练的慢

    • 前面的层一变,所有都得跟着变

    • 最后的层需要重新学习多次

    • 导致收敛变慢

  • 我们可以在学习底部层的时候避免变化顶部层吗?

所以提出了批量归一化BatchNorm(BN)

固定小批量里的均值和方差
μ B = 1 ∣ B ∣ ∑ i ∈ B x i σ B 2 = 1 ∣ B ∣ ∑ i ∈ B ( x i − μ B ) 2 + ϵ \mu_B = \frac{1}{|B|}\sum_{i\in{B}}x_i \\σ_B^2 = \frac{1}{|B|}\sum_{i\in{B}}(x_i - \mu_B)^2 + \epsilon μB=B1iBxiσB2=B1iB(xiμB)2+ϵ
再做额外的调整( γ \gamma γ β \beta β是可学习参数)
x i + 1 = γ x i − μ B σ B + β x_{i+1} =\gamma\frac{x_i- \mu_B}{σ_B} + \beta xi+1=γσBxiμB+β

ϵ \epsilon ϵ是为了防止方差为0

如果我不想得到均值为0,方差为1的样本,可以通过 γ \gamma γ β \beta β进行调整

需要注意的是

BN作用在全连接层或卷积层之后,激活函数之前,也可以作用在全连接层或卷积层的输入上

  • 对于全连接层,有两个维度(样本,特征)BN作用在特征维度上
  • 对于卷积层,有四个维度(批次大小,通道数,宽,高)BN作用在通道唯维度上,也就是说,批次大小 * 宽 * 高即每一个像素点相当于一个样本,通道数相当于特征。回想一下:多通道数输入用一组1 * 1卷积核做通道融合的过程,是差不多的。

另外,BN还有轻微的正则化的作用,因为批量中的样本是随机选择的,他们的均值和方差就相当于加入了噪声,以此来控制模型的复杂度。但是也因此没法和Dropout一起使用。

代码实现

BN函数

import torch
from torch import nn
from d2l import torch as d2l


def batch_norm(X, gamma, beta, moving_mean, moving_var, eps, momentum):

    # 通过is_grad_enabled来判断当前模式是训练模式还是预测模式
    if not torch.is_grad_enabled():
        # 如果是在预测模式下,直接使用传入的移动平均所得的均值和方差
        X_hat = (X - moving_mean) / torch.sqrt(moving_var + eps)
    else:
        assert len(X.shape) in (2, 4)
        if len(X.shape) == 2:
            # 使用全连接层的情况,计算特征维上的均值和方差
            mean = X.mean(dim=0)
            var = ((X - mean) ** 2).mean(dim=0)
        else:
            # 使用二维卷积层的情况,计算通道维上(axis=1)的均值和方差。
            # 这里我们需要保持X的形状以便后面可以做广播运算
            mean = X.mean(dim=(0, 2, 3), keepdim=True)
            var = ((X - mean) ** 2).mean(dim=(0, 2, 3), keepdim=True)

        # 训练模式下,用当前的均值和方差做标准化
        X_hat = (X - mean) / torch.sqrt(var + eps)

        # 更新移动平均的均值和方差,指数加权平均,详见吴恩达深度学习
        moving_mean = momentum * moving_mean + (1.0 - momentum) * mean
        moving_var = momentum * moving_var + (1.0 - momentum) * var
    Y = gamma * X_hat + beta  # 缩放和移位
    return Y, moving_mean.data, moving_var.data

batch_norm(X, gamma, beta, moving_mean, moving_var, eps, momentum)

X:输入

gamma、beta:两个可学习参数

moving_mean、moving_var:所有样本的均值、方差

eps:防止方差为0的 ϵ \epsilon ϵ

momentum:更新 moving_mean 和 moving_var

如果是在预测而不是在训练,这时候就要用到 moving_mean、moving_var, 因为我根本就没有小批次的样本输入。

BN层

class BatchNorm(nn.Module):
    # num_features:完全连接层的输出数量或卷积层的输出通道数。
    # num_dims:2表示完全连接层,4表示卷积层
    def __init__(self, num_features, num_dims):
        super().__init__()
        if num_dims == 2:
            shape = (1, num_features)
        else:
            shape = (1, num_features, 1, 1)
        # 参与求梯度和迭代的拉伸和偏移参数,分别初始化成1和0
        self.gamma = nn.Parameter(torch.ones(shape))
        self.beta = nn.Parameter(torch.zeros(shape))
        # 非模型参数的变量初始化为0和1
        self.moving_mean = torch.zeros(shape)
        self.moving_var = torch.ones(shape)

    def forward(self, X):
        # 如果X不在内存上,将moving_mean和moving_var
        # 复制到X所在显存上
        if self.moving_mean.device != X.device:
            self.moving_mean = self.moving_mean.to(X.device)
            self.moving_var = self.moving_var.to(X.device)
        # 保存更新过的moving_mean和moving_var
        Y, self.moving_mean, self.moving_var = batch_norm(
            X, self.gamma, self.beta, self.moving_mean,
            self.moving_var, eps=1e-5, momentum=0.9)
        return Y

构建模型

net = nn.Sequential(
    nn.Conv2d(1, 6, kernel_size=5), BatchNorm(6, num_dims=4), nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2),
    nn.Conv2d(6, 16, kernel_size=5), BatchNorm(16, num_dims=4), nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2), nn.Flatten(),
    nn.Linear(16*4*4, 120), BatchNorm(120, num_dims=2), nn.Sigmoid(),
    nn.Linear(120, 84), BatchNorm(84, num_dims=2), nn.Sigmoid(),
    nn.Linear(84, 10))

训练

lr, num_epochs, batch_size = 1.0, 10, 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

在这里插入图片描述

加了BN之后,训练可太快了,之前!牛!

简洁实现

用nn.BatchNorm2d(),可以看到参数少了一个,只用输入输入特征的个数

net = nn.Sequential(
    nn.Conv2d(1, 6, kernel_size=5), nn.BatchNorm2d(6), nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2),
    nn.Conv2d(6, 16, kernel_size=5), nn.BatchNorm2d(16), nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2), nn.Flatten(),
    nn.Linear(256, 120), nn.BatchNorm1d(120), nn.Sigmoid(),
    nn.Linear(120, 84), nn.BatchNorm1d(84), nn.Sigmoid(),
    nn.Linear(84, 10))
  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
动手深度学习 pytorch.pdf》是一本关于深度学习PyTorch框架的学习教材。它由苏剑林等人编写,以PyTorch作为工具,全面介绍了深度学习的基本原理和应用。该教材主要分为6个部分,包括深度学习基础、计算机视觉、自然语言处理、生成对抗网络、深度强化学习和工作实践。通过大量的例子和实践,读者可以深入理解深度学习的核心概念以及如何使用PyTorch实现深度学习模型。 首先,教材通过深度学习基础部分介绍了神经网络的基本原理、损失函数、优化算法等核心知识。接着,计算机视觉部分详细解释了图像分类、目标检测、图像风格转换等任务的实现方法。在自然语言处理部分,教材展示了如何用深度学习模型进行文本分类、语义理解等任务。生成对抗网络部分讲解了生成模型、判别模型和生成对抗训练等关键概念。深度强化学习部分介绍了如何使用深度学习与强化学习相结合解决控制问题。最后的工作实践部分通过实际场景案例,指导读者如何将深度学习应用到实际项目中。 《动手深度学习 pytorch.pdf》内容详实,既有理论知识又有实际应用的案例,适合既想理解深度学习基本原理又想动手实践的读者。无论是初学者还是有一定基础的学习者,都可以通过这本教材系统地学习深度学习PyTorch。总之,这本教材是学习深度学习的一本宝典,可以帮助读者快速入门并深入掌握深度学习PyTorch的使用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值