AI口语陪练软件有哪些?这五款简单易用!

本文介绍了网易有道的HiEcho口语教练,其提供专业对话练习;可栗英语以其流畅对话和准确发音助力备考;一码千言AI平台涵盖多领域语言工具;文心一言免费但AI语音不够自然;BubbleAI则以沉浸式学习吸引孩子。这些AI应用在提升口语能力方面各有特色。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、Hi Echo口语教练

Hi Echo是网易有道发布的搭载子日教育大模型的全球首个虚拟人口语教练。为你提供随时随地的一对一口语练习,覆盖多个对话场景和话题,比真人口语教练更专业地道;提供对话分数及完整对话评测报告,帮助快速提升口语能力。

Hi Echo是24小时随时随地可以使用,以对话的方式进行口语练习,提供口语对话条件和环境类真人,循循善诱,不断发问引导用户多轮对话,属实是社恐练口语的救星。

而且新用户注册可以免费使用五分钟,连续包月是68元/月,连续包年是498元/月,相当于一节外教课的钱获得了一年的口语教练。

二、可栗英语

"可栗英语"是一款具有高度智能化的英语对话AI应用,既可以在app中使用,也可以在微信小程序中找到它。这款应用的对话流畅性令人惊艳,不仅如此,它的发音准确且自然,仿佛真人在你耳边细语。而对于正在备考雅思口语的学生来说,"可栗英语"更是一位得力的助手,提供了针对性的练习内容。

虽然"可栗英语"无法生成分析报告,但它提供了回顾聊天记录的功能,使用户能够随时查看并复习自己的对话内容,从而更好地掌握英语口语。

另外,"可栗英语"的部分功能是完全免费的,即使不开通会员,每天也能免费使用20句对话,这对大多数人来说已经足够。而且,新用户可以领取24小时的试用VIP,且每天用户可以免费使用十几分钟,足以满足日常的学习需求。

三、一码千言AI平台

一码千言AI平台是利用AIGC技术为用户精心打造的工作、学习、生活一体化集成平台。围绕文案、科研、英语、心理、法律、就业等领域设计了近百种种应用工具,总有一款适合您!

其中,它的小言心语栏目,无论是在网站还是微信小程序中的表现,都是一个极其全面的语言AI平台,所有产品的对话都是通过语音交流进行的。并且通过签到即可免费使用到其中的工具,且语言功能覆盖面还广泛,主打一个效率高且实用。而且,里面的栏目和内容还在不断更新中哦。

四、文心一言

文言一心也是一款极具特色的语言学习应用。用户只需轻松点击“发现”栏目,再选择“英语”选项,就能轻松开启英语对话的学习旅程。

它目前完全免费提供服务,且支持用户回看学习内容,这无疑为英语学习者提供了极大的便利和帮助。但该应用的AI语音对话系统有些许不够自然,机器感较为明显,这可能会影响用户的学习体验。此外,该应用还暂时缺乏纠音润色等附加功能,这对于追求完美发音的用户来说,可能会感到些许遗憾。

然而,无论优点还是缺点,都不能否认的是,文言一心APP为我们的英语学习提供了一个全新的平台和可能。

五、Bubble AI

Bubble AI是一款好玩又有效的英语口语学习软件,备受欢迎。进入软件的第一感受是——这是孩子们会喜欢的沉浸式英语对话语景应用。打开软件就是可以滑动的几个卡通角色(朵拉、小猪佩奇、哈利波特、蛋仔等)口语练习对象,亲切可爱的IP角色陪你一起练习英语,还有专属于IP的话题让熟悉动画片的中小学生练习口语对话更有趣味。

针对不同口语能力的用户,通过AI智能口语陪练,能够打分和纠正口语发音,还可以通过学情报告复习英语常用语料中的单词、词法、情景、语境等知识要点,以快速告别哑巴英语。

### AI口语陪练初版开发实现方案 #### 功能需求分析 AI 口语陪练的核心目标是帮助用户提升其外语表达能力,通过模拟真实对话场景来增强用户的听说技能。基于现有大模型的能力范围[^1],初版的功能可以限定为以下几个模块: - **语音识别**:将用户的语音输入转化为文字。 - **自然语言处理 (NLP)**:对转化后的文本进行语法、句意和逻辑分析。 - **反馈生成**:根据用户的输入提供针对性的改进建议或纠正错误。 - **情景模拟**:创建多样化的对话情境以适应不同学习需求。 这些功能可以通过现有的预训练大模型结合特定领域数据微调来实现。 --- #### 技术架构设计 ##### 数据层 构建高质量的语言数据库对于提高模型性能至关重要。这包括但不限于标准发音音频库、常见语法错误案例集以及多主题对话素材集合。此外,还需准备用于评估学生表现的标准评分体系及相关参数设置指南[^2]。 ##### 服务层 采用云原生架构部署整个系统,利用容器化技术和自动化运维工具保障系统的稳定运行和服务质量。具体来说: - 使用 RESTful API 或 GraphQL 接口连接前端客户端与后端服务器; - 集成第三方语音转写API完成初步的声音信号解析工作; - 基于 Transformer 架构的大规模预训练语言模型作为核心推理引擎负责理解和回应使用者的话语内容; ##### 应用层 设计简洁直观的人机交互界面(UI),支持多种设备访问形式(如Web浏览器, 移动应用程序等). 同时考虑加入游戏化元素激励机制促进持续参与度. --- #### 关键算法和技术点 1. **语音到文本转换(Voice-to-Text Conversion):** 利用先进的自动语音识别(Automatic Speech Recognition, ASR)技术将用户的口头陈述转变为可被进一步分析的文字串序列. 2. **上下文感知的回答生成(Context-Aware Response Generation):** 运用双向编码器表示法(Bidirectional Encoder Representations from Transformers, BERT)变体或其他相似结构捕捉更深层次含义并据此产生活泼生动且贴切恰当的答案回复给提问者. 3. **个性化推荐(Personalized Recommendation System):** 根据每位学员过往的学习轨迹记录及其当前水平测试结果定制专属练习计划表单,确保每次互动都能带来实际进步价值最大化效果呈现出来供参考使用人员查看调整策略方向更加精准有效率更高一些吧! 4. **安全性防护(Security Protection Mechanism Against Malicious Prompts):** 设计专门针对恶意提示词(Prompts Engineering Attacks)防御措施防止潜在风险发生影响用户体验满意度下降情况出现哦~比如设立黑名单过滤敏感词汇短语组合等等手段相结合运用起来形成全方位保护屏障作用哟~ ```python import speech_recognition as sr from transformers import pipeline def recognize_speech(audio_file_path): recognizer = sr.Recognizer() with sr.AudioFile(audio_file_path) as source: audio_data = recognizer.record(source) text = recognizer.recognize_google(audio_data) return text def generate_response(user_input_text): nlp_pipeline = pipeline('text-generation', model='gpt-3') response = nlp_pipeline(user_input_text)[0]['generated_text'] return response if __name__ == "__main__": user_audio = 'path/to/user/audio/file.wav' recognized_text = recognize_speech(user_audio) ai_reply = generate_response(recognized_text) print(f"User said: {recognized_text}") print(f"AI replied: {ai_reply}") ``` 上述代码片段展示了如何集成语音识别与文本生成两大关键技术组件的一个简单例子. ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值