前言
本文介绍了感受野块(RFB)模块在YOLOv11中的结合应用。RFB模块是一种多分支卷积块,由多分支卷积层和扩张池化或卷积层组成,通过模拟多尺度感受野和控制感受野偏心性,增强轻量级CNN模型学习到的深层特征,提高目标检测的准确性和速度。我们将RFB模块集成到YOLOv11的检测头中,并进行相关注册和配置。实验结果显示,该方法能在保持实时速度的同时达到先进深度检测器的性能。
文章目录: YOLOv11改进大全:卷积层、轻量化、注意力机制、损失函数、Backbone、SPPF、Neck、检测头全方位优化汇总
专栏链接: YOLOv11改进专栏
介绍

摘要
当前性能最优的目标检测器依赖于深度卷积神经网络(CNN)骨干,如ResNet - 101和Inception,尽管这些骨干网络凭借强大的特征表示能力展现出良好性能,但却存在计算成本高的问题。与之相反,部分轻量级模型的检测器虽能够实现实时处理,但其准确性往往受到诟病。在本文中,我们探索了一种替代方案,即通过运用手工设计的机制来增强轻量级特征,进而构建出一种兼具快速性与准确性的检测器。受人类视觉系统中感受野(RF)结构的启发,我们提出了一种新颖的感受野块(RFB)模块,该模块考虑了感受野大小与偏心率之间的关系,旨在增强特征的可辨别性和鲁棒性。我们进一步将RFB集成到单发多框检测器(SSD)之上,构建了RFB Net检测器。为评估其有效性,我们在两个主要基准上开展了实验,实验结果表明,RFB Net能够在维持实时处理速度的同时,达到先进深度检测器的性能水平。相关代码可在https://github.com/ruinmessi/RFBNet获取。
文章链接
论文地址:论文地址
代码地址:
订阅专栏 解锁全文
1742






