YOLOv11改进 - 卷积Conv | 增强感受野与多尺度特征捕获:引入RFB感受野块(Receptive Field Block)多分支卷积结构

部署运行你感兴趣的模型镜像

前言

本文介绍了感受野块(RFB)模块在YOLOv11中的结合应用。RFB模块是一种多分支卷积块,由多分支卷积层和扩张池化或卷积层组成,通过模拟多尺度感受野和控制感受野偏心性,增强轻量级CNN模型学习到的深层特征,提高目标检测的准确性和速度。我们将RFB模块集成到YOLOv11的检测头中,并进行相关注册和配置。实验结果显示,该方法能在保持实时速度的同时达到先进深度检测器的性能。

文章目录: YOLOv11改进大全:卷积层、轻量化、注意力机制、损失函数、Backbone、SPPF、Neck、检测头全方位优化汇总

专栏链接: YOLOv11改进专栏

介绍

image-20240604085730595

摘要

当前性能最优的目标检测器依赖于深度卷积神经网络(CNN)骨干,如ResNet - 101和Inception,尽管这些骨干网络凭借强大的特征表示能力展现出良好性能,但却存在计算成本高的问题。与之相反,部分轻量级模型的检测器虽能够实现实时处理,但其准确性往往受到诟病。在本文中,我们探索了一种替代方案,即通过运用手工设计的机制来增强轻量级特征,进而构建出一种兼具快速性与准确性的检测器。受人类视觉系统中感受野(RF)结构的启发,我们提出了一种新颖的感受野块(RFB)模块,该模块考虑了感受野大小与偏心率之间的关系,旨在增强特征的可辨别性和鲁棒性。我们进一步将RFB集成到单发多框检测器(SSD)之上,构建了RFB Net检测器。为评估其有效性,我们在两个主要基准上开展了实验,实验结果表明,RFB Net能够在维持实时处理速度的同时,达到先进深度检测器的性能水平。相关代码可在https://github.com/ruinmessi/RFBNet获取。

文章链接

论文地址:论文地址

代码地址:

您可能感兴趣的与本文相关的镜像

Yolo-v5

Yolo-v5

Yolo

YOLO(You Only Look Once)是一种流行的物体检测和图像分割模型,由华盛顿大学的Joseph Redmon 和Ali Farhadi 开发。 YOLO 于2015 年推出,因其高速和高精度而广受欢迎

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

魔改工程师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值