前言
本文介绍了将具有显式空间先验的视觉骨干网络RMT相关技术集成到YOLOv11的方法。RMT受Retentive Network (RetNet)启发,将时间衰减机制扩展到空间领域,提出空间衰减矩阵和适配的注意力分解形式,以线性复杂度集成显式空间先验。我们将核心代码中的RetBlock等模块引入YOLOv11,在tasks.py中注册并配置yaml文件。实验表明,RMT在各种视觉任务表现出色,在ImageNet - 1k、COCO检测、ADE20K语义分割等任务中取得良好成绩。
文章目录: YOLOv11改进大全:卷积层、轻量化、注意力机制、损失函数、Backbone、SPPF、Neck、检测头全方位优化汇总
专栏链接: YOLOv11改进专栏
介绍

摘要
近年来,Vision Transformer (ViT) 在计算机视觉领域受到了越来越多的关注。然而,ViT 的核心组件——自注意力(Self - Attention)缺乏显式的空间先验,且其计算复杂度呈二次方,这限制了 ViT 的应用范围。为解决这些问题,我们从自然语言处理(NLP)领域近期提出的 Retentive Network (RetNet) 获得启发,提出一种具有显式空间先验的通用型强大视觉骨干网络 RMT。具体而言,我们将 RetNet 的时间衰减机制拓展至空间领域,并基于曼哈顿距离提出一种空间衰减矩阵,用于为自注意力引入显式的空间先验。此外,我们还提出一种适配显式空间先验的注意力分解形式,旨在减轻建模全局信息的计算负担,同时不破坏空间衰减矩阵的结构。基于空间衰减矩阵和注意力分解形式,我们能够以线性复杂度将显式空间先验灵活集成到视觉骨干网络中。大量实验表明,RMT 在各类视觉任务中表现优异。具体来说,在无额外训练数据的情况下,RMT 在 ImageNet - 1k 数据集上分别以 27M 参数/4.5GFLOPs 和 96M 参数/18.2GFLOPs 实现了 84.8% 和 86.1% 的 Top - 1 准确率。在下游任务中,RMT 在 COCO 检测任务上取得了 54.5 的 box AP 和 47.2 的 mask AP,在 ADE20K 语义分割任务上取得了
订阅专栏 解锁全文
796

被折叠的 条评论
为什么被折叠?



