YOLOv11改进 - C3k2融合 | C3k2模块融合RetBlock保持块(Retention Block)实现高效局部细节增强与多尺度目标检测性能提升

部署运行你感兴趣的模型镜像

前言

本文介绍了将具有显式空间先验的视觉骨干网络RMT相关技术集成到YOLOv11的方法。RMT受Retentive Network (RetNet)启发,将时间衰减机制扩展到空间领域,提出空间衰减矩阵和适配的注意力分解形式,以线性复杂度集成显式空间先验。我们将核心代码中的RetBlock等模块引入YOLOv11,在tasks.py中注册并配置yaml文件。实验表明,RMT在各种视觉任务表现出色,在ImageNet - 1k、COCO检测、ADE20K语义分割等任务中取得良好成绩。

文章目录: YOLOv11改进大全:卷积层、轻量化、注意力机制、损失函数、Backbone、SPPF、Neck、检测头全方位优化汇总

专栏链接: YOLOv11改进专栏

介绍

image-20241125140823419

摘要

近年来,Vision Transformer (ViT) 在计算机视觉领域受到了越来越多的关注。然而,ViT 的核心组件——自注意力(Self - Attention)缺乏显式的空间先验,且其计算复杂度呈二次方,这限制了 ViT 的应用范围。为解决这些问题,我们从自然语言处理(NLP)领域近期提出的 Retentive Network (RetNet) 获得启发,提出一种具有显式空间先验的通用型强大视觉骨干网络 RMT。具体而言,我们将 RetNet 的时间衰减机制拓展至空间领域,并基于曼哈顿距离提出一种空间衰减矩阵,用于为自注意力引入显式的空间先验。此外,我们还提出一种适配显式空间先验的注意力分解形式,旨在减轻建模全局信息的计算负担,同时不破坏空间衰减矩阵的结构。基于空间衰减矩阵和注意力分解形式,我们能够以线性复杂度将显式空间先验灵活集成到视觉骨干网络中。大量实验表明,RMT 在各类视觉任务中表现优异。具体来说,在无额外训练数据的情况下,RMT 在 ImageNet - 1k 数据集上分别以 27M 参数/4.5GFLOPs 和 96M 参数/18.2GFLOPs 实现了 84.8% 和 86.1% 的 Top - 1 准确率。在下游任务中,RMT 在 COCO 检测任务上取得了 54.5 的 box AP 和 47.2 的 mask AP,在 ADE20K 语义分割任务上取得了

您可能感兴趣的与本文相关的镜像

Yolo-v8.3

Yolo-v8.3

Yolo

YOLO(You Only Look Once)是一种流行的物体检测和图像分割模型,由华盛顿大学的Joseph Redmon 和Ali Farhadi 开发。 YOLO 于2015 年推出,因其高速和高精度而广受欢迎

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

魔改工程师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值