YOLOv11 改进 - 注意力机制 | ParNet并行子网络:多分支协同优化特征表达,增强模型判别能

部署运行你感兴趣的模型镜像

前言

本文介绍了ParNet注意力机制及其在YOLOv11中的应用。ParNet注意力通过并行子网络结构,将网络层组织成多个子网络并行处理输入特征,降低了传统注意力机制在处理长序列时的计算复杂度。该机制采用VGG风格的块和特征融合策略,具有低深度高性能、参数效率高、可扩展性强和并行化能力好等创新点。我们将ParNet注意力引入YOLOv11,在检测头部分应用该机制。通过实验训练改进后的模型,有望提升YOLOv11在目标检测任务中的性能。

文章目录: YOLOv11改进大全:卷积层、轻量化、注意力机制、损失函数、Backbone、SPPF、Neck、检测头全方位优化汇总

专栏链接: YOLOv11改进专栏

介绍

image-20241028104225990

摘要

深度是深度神经网络的核心特征,然而网络深度的增加往往伴随着顺序计算量的上升和延迟时间的增长。这引发了一个关键性问题:是否能够构建出具有高性能的"非深度"神经网络?本文证实了这一可能性。为实现此目标,我们采用了并行子网络架构而非传统的层级堆叠方式,从而在维持高性能的同时显著降低了网络深度。通过充分利用并行子结构,我们首次展示了深度仅为12的网络能够在ImageNet数据集上实现超过80%的Top-1准确率,在CIFAR10上达到96%的准确率,在CIFAR100上达到81%的准确率。此外,我们还证明了深度为12的骨干网络在MS-COCO数据集上能够实现48%的平均精度(AP)。我们对这一设计的扩展规律进行了深入分析,并阐明了如何在保持网络深度不变的前提下提升性能表现。最后,我们提供了一个概念验证,展示了非深度网络在构建低延迟识别系统方面的应用潜力。相关代码已发布于https://github.com/imankgoyal/NonDeepNetworks。

文章链接

论文地址:论文地址

代码地址:

您可能感兴趣的与本文相关的镜像

Yolo-v5

Yolo-v5

Yolo

YOLO(You Only Look Once)是一种流行的物体检测和图像分割模型,由华盛顿大学的Joseph Redmon 和Ali Farhadi 开发。 YOLO 于2015 年推出,因其高速和高精度而广受欢迎

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

魔改工程师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值