前言
本文介绍了Non-local自注意力模型及其在YOLOv11中的应用。Non-local模型受非局部均值去噪滤波启发,通过计算任意两点间交互捕捉远程依赖,可作为组件集成到多种网络架构。该模型有高斯、嵌入式高斯、点积和连接四种实现模式,通过不同策略衡量特征点相似性。我们将Non-local模块引入YOLOv11,在骨干网络中添加该模块。实验表明,改进后的YOLOv11在目标检测任务中能更有效地捕捉上下文信息,有望提升检测性能。
文章目录: YOLOv11改进大全:卷积层、轻量化、注意力机制、损失函数、Backbone、SPPF、Neck、检测头全方位优化汇总
专栏链接: YOLOv11改进专栏
文章目录
介绍

摘要
卷积神经网络与循环神经网络中的操作通常局限于处理局部邻域信息,本文提出了一种创新的非局部操作机制,作为捕获长程依赖关系的通用计算模块。该非局部操作的设计灵感源自计算机视觉领域的经典非局部均值方法,其核心原理是通过计算任意位置处响应值为所有空间位置特征的加权和来实现全局信息整合。该模块具备高度通用性和可扩展性,能够灵活嵌入多种计算机视觉网络架构中,有效增强模型对远程依赖关系的建模能力。
创新点
- 提出的non-local operations通过计算任意两个位置之间的交互直接捕捉远程依赖,而不用局限于相邻点,其相当于构造了一个和特征图谱尺寸一样大的卷积核, 从而可以维持更多信息。
- non-local可以作为一个组件,和其它网络结构结合,经过作者实验,证明了其可以应用于图像分类、目标检测、目标分割、姿态识别等视觉任务中,并且效果不错。
- Non-local在视频分类上效果很好,倾向于使用在视频分类这个领域中。
文章链接
论文地址:论文地址
订阅专栏 解锁全文
1778

被折叠的 条评论
为什么被折叠?



