1 加强贸易规范管理和严控虚假贸易的政策背景
在当前经济形势下,虚假贸易行为不仅扰乱市场秩序,更对国有资产安全构成威胁。国务院的指导意见、条例和国资委的通知,为企业敲响警钟,要求企业必须加强内部监管,确保贸易的真实性和合规性。
2023年2月,中共中央办公厅、国务院办公厅印发《关于进一步加强财会监督工作的意见》中明确提出要依法履行财会监督主责,综合运用检查核查、评估评价、监测监控、调查研究等方式加强对经济业务、财务管理、内部控制、会计行为的日常监督,严肃查处财务数据造假、出具“阴阳报告”、内部监督失效等突出问题,严厉打击伪造会计账簿、虚构经济业务、滥用会计准则等会计违法违规行为。
2023年10月,国务院国资委发布《关于规范中央企业贸易管理严禁各类虚假贸易的通知》,严禁各类虚假贸易业务的开展,提出“十不准”的详细内容,国资委继续紧盯屡禁不止的“牛皮癣”问题,对融资性贸易、“空转”“走单”虚假业务问题“零容忍”。
2024年5月,国务院正式公布《国有企业管理人员处分条例》,国企改革过程中的一些“硬要求”也被写入,包括“十不准”(融资性贸易、虚假贸易)等,进一步加强对国有企业管理人员的管理与监督、加强企业国有资产管理并防止国有资产流失,让国企虚假贸易业务正式迎来监管闭环。
在数字化、网络化的时代背景下,深化“互联网+监督”成为必然趋势。企业需要充分运用大数据和信息化手段,构建一个全面、实时、高效的虚假贸易排查监控体系,切实提升风险管控效能。
2 数智融合强化虚假贸易排查监控体系
识别虚假贸易企业需要深入了解空转、走单贸易和融资性贸易的业务特征。这些业务具有交易频繁、金额巨大、链条复杂等特点,且往往伴随着高风险。
空转、走单贸易:指贸易行为缺乏真实性和实质性,加入交易环节不具有商业理由,通过反复交易、循环周转等方式虚构贸易行为进行套利,本质是虚假贸易。如:企业之间循环买卖同一批货物,但货物实际上并未转移,涉及虚构交易合同和发票,贸易活动缺乏真实的物流支持等。企业开展这类交易的目的可能是扩大收入规模、完成业绩指标或其他诉求。
融资性贸易:以贸易业务为名,实为出借资金、无商业实质的违规业务。融资性贸易表现形式多样,具有一定的隐蔽性,主要特征有:一是虚构贸易背景,或人为增加交易环节;二是上游供应商和下游客户均为同一实际控制人控制,或上下游之间存在特定利益关系;三是贸易标的由对方实质控制;四是直接提供资金或通过结算票据、办理保理、增信支持等方式变相提供资金。
防范虚假贸易企业需要严格按照核定的贸易品种或围绕与主业相关的产品开展,针对贸易子企业应明确其允许开展的贸易业务种类、结算方式、货物流转方式等事项,并定期开展专项核查。原则上不得开展非标仓单交易,确有特殊理由的要报集团审批。加强贸易的环节管理,不应在贸易业务中人为增加不必要的交易环节,衔接合同管理系统,从合同签约、交付、结算等全部环节对贸易过程进行管理,按照会计准则规定确认代理贸易收入,建立包括贸易业务管理在内的合规风控管理机制。
监控虚假贸易企业需要利用信息技术,如大数据分析、人工智能和区块链,来自动化监测和分析贸易活动,建立事前防范、事中预警、事后分析的虚假贸易监控体系,完善内部控制制度和监控手段。事前通过交易对手风险评估和信用评级,筛选潜在的高风险客户和交易,避免与风险较高的对手进行贸易;事中建立实时监控系统,对交易过程中的异常行为进行实时预警,如价格异常、交易频率过高等,并将预警指标和控制指标嵌入业务活动过程,规避违规行为的发生;事后对已完成的交易进行回溯分析,评估交易的真实性和合规性,及时发现并处理潜在的虚假贸易行为。
3 虚假贸易排查监控的数智化解决方案
随着数智化技术的应用,用友BIP数智化平台为虚假贸易排查监控提供了全新的解决方案(见图1)。通过异常特征识别模型发现关键风险点,有效防范企业虚假贸易行为。从合同、订单、物流、税务、财务、银行中获取交易链数据,基于交易过程全链路对融资性贸易、空转走单贸易进行风险模型定义,利用深度优先搜索(DFS)算法提高对交易业务上下游关系的有效识别,借助指标监测和专家模型进行风险评价,鉴别虚假贸易行为和进行风险控制,建立虚假贸易排查监控的数智化能力。
图1 异常贸易排查监控系统架构
1、构建异常贸易识别指标体系:
根据虚假贸易的业务特征,需要构建一套异常贸易识别指标体系。包括确定关键指标:基于历史数据和行业经验,确定能够反映贸易业务的指标,如:客商关联关系、交易频率、交易规模、交易模式、价格波动等多个方面,以便全面、准确地识别异常交易行为。量化指标阈值:将关键指标进行量化,如:设置交易价格与市场平均价格的偏离阈值,或者设定关联交易的判断标准。并对每个指标进行权重分配,反映其在风险评估中的重要性。构建指标体系:将多个关键指标组合成一个完整的异常贸易识别指标体系,确保能全面覆盖虚假贸易的各个方面。根据市场变化和监管要求,定期更新和优化指标体系。
2、采集数据并识别贸易链关系:
应用数据采集技术,整合企业内部的财务、物流、合同等数据,以及外部的市场、信用等数据,对收集的数据进行清洗和整理,去除重复、错误或无效的数据,确保数据的准确性和完整性。利用数据挖掘和深度优先搜索(DFS)算法等技术,对贸易数据进行深度挖掘,以特定约束对象(特定交易主体)为事件的起点,以与之有交易关系的客户结点为汇点,溯源查询在选定时段内具有极大交易权值的可疑交易路径,识别出潜在的贸易链关系,从中发现异常交易情况。鉴别贸易参与各方之间的关系,构建贸易链网络图,找出循环交易、关联方交易等可能涉及虚假贸易的行为。
3、通过特征指标体系建立360°画像:
基于空转、走单贸易和融资性贸易的业务特征,结合异常贸易识别的指标体系,为每个贸易活动建立一个360°画像。这个画像包括贸易活动的各个方面信息,如交易对手、信用状况、交易行为、货物、批次、交易金额、交易时间、发票、应收应付账期、银行交易流水、关联关系等,以便更全面地了解贸易活动的真实情况。结合企业特征和关联关系图谱进行关联关系筛查,对贸易活动行为深入分析,找出可能存在的异常行为和风险点,评估企业的虚假贸易风险等级。
4、借助指标监测和专家模型进行风险评价:
通过对案例知识库、管理办法、内控制度、专家经验库的归纳总结,形成全方位、多角度穿透业务过程的异常特征指标体系,实时监测异常贸易识别指标的变化情况。结合专家经验和机器学习算法,构建虚假贸易风险评价模型,进一步识别贸易链异常特征,筛选合同、物流、毛利等异常信息,对贸易活动进行风险评价。利用评分建模方法,基于指标阈值判断、异常标签组合及权重配置得出更加精准的疑似异常贸易清单,对异常行为进行风险分级,确定重点关注对象。
5、鉴别虚假贸易行为和进行风险控制:
根据风险评价结果(见图2),企业对异常贸易线索进行深入调查和分析,鉴别出真实的虚假贸易行为。对于高风险贸易活动,及时发出预警并采取相应的风险控制措施,如停止交易、冻结资金、追回损失、移送司法机关等,并及时向相关监管部门报告。对采取风险控制措施后的贸易活动进行持续监控,确保虚假贸易行为得到有效遏制,并根据实际情况不断调整和完善排查监控指标。
图2 疑似异常贸易清单
4 虚假贸易排查监控方案的实施路径
实施虚假贸易排查监控的解决方案是一个系统性的过程,需要明确需求、评估数据要素、建模指标、采集数据和持续优化。
1、明确虚假贸易排查的需求和建设目标:
在实施虚假贸易排查监控之前,首先要明确排查的具体需求,例如要监控哪些类型的虚假贸易行为、排查的覆盖范围和深度等。设定明确的建设目标,如提高贸易合规性、降低虚假贸易风险、保护企业利益等。这些目标将为后续的排查工作提供指导。
2、评估数据要素和来源条件:
在虚假贸易排查监控中,数据要素是关键。需要对业务、财务、税务和资金等全业务数据进行评估,了解其可用性、完整性、准确性和重要性。包括其在业务决策中的重要性、变化程度、安全性和商业价值等。这将有助于确定哪些数据是排查监控的重点。
3、虚假贸易排查监控指标建模:
基于对全业务数据要素的评估,结合行业和企业业务特点,建立虚假贸易排查监控的指标模型。这些指标应能够反映虚假贸易的特征和规律,如异常交易、不符合行业规律的数据、货物流与资金流不匹配等。建模过程中使用数据挖掘、机器学习等技术手段,提高指标模型的准确性和有效性。
4、数据采集与虚假贸易监控:
根据建立的指标模型,采集相关的业务数据,包括交易数据、财务数据、税务数据、资金数据等。确保数据的准确性和实时性,及时发现和监控虚假贸易行为。将采集的数据应用于指标模型中,进行实时分析和监控。根据监控结果,对模型进行调整和优化,提高其适应性和准确性。建立数据闭环,实现数据的持续采集、处理、分析和应用。通过迭代优化和技术创新,不断提升模型的性能和适应性,确保虚假贸易排查监控适应不断变化的市场环境。
在实施过程中,还需要注意加强跨部门合作和数据信息共享,提高排查效率,形成合力打击虚假贸易行为。不断提高企业的责任意识和内部控制水平,加强对贸易流程的监管和控制。建立健全的内部控制体系,提高识别和防范虚假贸易行为的能力。
虚假贸易管控历来是国资委对国资央企规模增长的关注重点,随着技术的不断进步和政策的不断完善,虚假贸易排查监控已成为企业风险管理的重要内容。虚假贸易排查监控系统的建设,是企业应对复杂贸易环境、保障国有资产安全的重要手段。通过数智化技术的应用,企业可以有效提升风险监控效能,确保业务合规性和资产安全性,为企业的可持续发展提供坚实保障。
参考文献
[1] 中共中央办公厅 国务院办公厅:《关于进一步加强财会监督工作的意见》,2023年
[2] 国务院国资委:《关于规范中央企业贸易管理严禁各类虚假贸易的通知》(国资发财评规[2023]74号),2023年
[3] 国务院:《国有企业管理人员处分条例》,2024年
[4] 用友:《强化数智赋能 深化财会监督》,发表于2024年