高数笔记-第九章 多元函数微分法及其应用-1

第九章 多元函数微分法及其应用

第一节多元函数的基本概念

平面点集

坐标平面: R 2 = R × R = { ( x , y ) ∣ x , y ∈ R } R^2 = R \times R = \{(x, y) | x, y \in R\} R2=R×R={(x,y)x,yR}
平面点集:坐标平面上具有某种性质 P P P的点的集合
E = { ( x , y ) ∣ ( x , y ) 具 有 性 质 P } E = \{(x, y)|(x,y)具有性质P\} E={(x,y)(x,y)P}
例子:平面上以原点为中心、 r r r为半径的圆内所有点点集合是 C = { ( x , y ) ∣ x 2 + y 2 < r 2 } C = \{(x,y) | x^2 + y^2 < r^2\} C={(x,y)x2+y2<r2}
C = { P ∣    ∣ O P ∣ < r } C = \{P| \ \ |OP| < r\} C={P  OP<r}
其中,点 P P P表示 ( x , y ) (x,y) (x,y) ∣ O P ∣ |OP| OP表示点 P P P到原点 O O O的距离。

R 2 R^2 R2中邻域的概念
P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0) x O y xOy xOy平面上的一个点, δ \delta δ是某一正数,与点 P 0 ( x 0 , y 0 ) P_0(x_0, y_0) P0(x0,y0)距离小于 δ \delta δ的点 P ( x , y ) P(x,y) P(x,y)的全体,称为点 P 0 P0 P0 δ \delta δ邻域,记作 U ( P 0 , δ ) U(P_0,\delta) U(P0,δ),即 U ( P 0 , δ ) = { P ∣   ∣ P P 0 ∣ < δ } U(P_0,\delta) = \{P| \ |PP_0| < \delta\} U(P0,δ)={P PP0<δ},也就是
U ( P 0 , δ ) = { ( x , y ) ∣   ( x − x 0 ) 2 + ( y − y 0 ) 2 < δ } U(P_0,\delta) = \{(x,y)| \ \sqrt{(x-x_0)^2 + (y-y_0)^2} < \delta\} U(P0,δ)={(x,y) (xx0)2+(yy0)2 <δ}
P 0 P_0 P0 δ \delta δ去心邻域,记作 U ˚ ( P 0 , δ ) \mathring{U}(P_0, \delta) U˚(P0,δ),即 U ˚ ( P 0 , δ ) = { P ∣   0 < ∣ P P 0 ∣ < δ } \mathring{U}(P_0, \delta) = \{P| \ 0<|PP_0| < \delta\} U˚(P0,δ)={P 0<PP0<δ}

点和点集之间的关系
任意一点 P ∈ R 2 P \in R^2 PR2与任意一个点集 E ⊂ R 2 E \subset R^2 ER2有如下关系
(1)内点:如果存在点 P P P的某个邻域 U ( P ) U(P) U(P),使得 U ( P ) ⊂ E U(P)\subset E U(P)E,那么称 P P P E E E的内点。
(2)外点:如果存在点 P P P的某个邻域 U ( P ) U(P) U(P),使得 U ( P ) ∩ E = ∅ U(P) \cap E = \emptyset U(P)E=,那么称 P P P E E E的外点。
(3)边界点:如果点 P P P的任一邻域内既含有属于 E E E的点,又含有不属于 E E E的点,那么称 P P P E E E的边界点。
边界: E E E的边界点点全体,称为 E E E的边界,记作 ∂ E \partial E E
(4)聚点:如果对于任意给定的 δ > 0 \delta > 0 δ>0,点 P P P的去心邻域 U ˚ ( P , δ ) \mathring{U}(P, \delta) U˚(P,δ)内总有 E E E中的点,那么称 P P P E E E的聚点。

重要的平面点集相关概念
(1)开集:如果点集 E E E的点都是 E E E的内点,那么称 E E E为开集。
(2)闭集:如果点集 E E E的边界 ∂ E ⊂ E \partial E \subset E EE,那么称 E E E为闭集。
(3)连通集:如果点集 E E E内任何两点,都可用折线连结起来,且该折线上的点都属于 E E E,那么称 E E E为连通集。
(4)开区域:连通的开集称为开区域。
(5)开区域连同它的边界一起所构成的点集称为闭区域。
(6)有界集:对于平面点集 E E E,如果存在某一正数 r r r,使得 E ⊂ U ( O , r ) E \subset U(O, r) EU(O,r),其中 O O O为坐标原点,那么称 E E E为有界集。
(7)无界集:一个集合如果不是有界集,就称这个集合为无界集。

n 维 空 间 n 维空间 n

R n R^n Rn表示 n n n元有序实数组 ( x 1 , x 2 , … , x n ) (x_1, x_2, \dots, x_n) (x1,x2,,xn)的全体所构成的集合,即
R n = R × R × ⋯ × R = { ( x 1 , x 2 , ⋯   , x n ) ∣   x i ∈ R , i = 1 , 2 , ⋯   , n } R^n = R \times R \times \cdots \times R = \{(x_1, x_2, \cdots, x_n)| \ x_i \in R,i = 1,2,\cdots,n\} Rn=R×R××R={(x1,x2,,xn) xiR,i=1,2,,n}
R n R^n Rn中的线性运算
x = ( x 1 , x 2 , ⋯   , x n ) , y = ( y 1 , y 2 , ⋯   , y n ) \textbf{x}=(x_1, x_2, \cdots, x_n), \textbf{y}=(y_1, y_2, \cdots, y_n) x=(x1,x2,,xn),y=(y1,y2,,yn) R n R_n Rn中的两个元素。即 x ∈ R 2 , y ∈ R 2 \textbf{x} \in R^2, \textbf{y} \in R^2 xR2,yR2.那么有
x + y = ( x 1 + y 1 , x 2 + y 2 , ⋯   , x n + y n ) λ x = ( λ x 1 , λ x 2 , ⋯   , λ x n ) \begin{aligned} &\bold{x + y} = (x_1+y_1, x_2+y_2, \cdots,x_n+y_n) \\ &\lambda \textbf{x} = (\lambda x_1, \lambda x_2, \cdots, \lambda x_n) \end{aligned} x+y=(x1+y1,x2+y2,,xn+yn)λx=(λx1,λx2,,λxn)

R n R^n Rn中元素 x = ( x 1 , x 2 , ⋯   , x n ) \bold{x} = (x_1, x_2, \cdots, x_n) x=(x1,x2,,xn)和元素 y = ( y 1 , y 2 , ⋯   , y n ) \bold{y} = (y_1, y_2, \cdots, y_n) y=(y1,y2,,yn)间的距离,记作 ρ ( x , y ) \bold{\rho}(\bold{x}, \bold{y}) ρ(x,y),规定
ρ ( x , y ) = ( x 1 − y 1 ) 2 + ( x 2 − y 2 ) 2 + ⋯ + ( x n − y n ) 2 \bold{\rho(x,y)} = \sqrt{(x_1-y_1)^2+(x_2-y_2)^2+\cdots+(x_n-y_n)^2} ρ(x,y)=(x1y1)2+(x2y2)2++(xnyn)2

R n R^n Rn中元素 x = ( x 1 , x 2 , ⋯   , x n ) \bold{x} = (x_1, x_2, \cdots, x_n) x=(x1,x2,,xn) 0 \bold{0} 0元之间点距离记作 ∣ ∣ x ∣ ∣ ||\bold{x}|| x
∣ ∣ x ∣ ∣ = x 1 2 + x 2 2 + ⋯ + x n 2 ||\bold{x}|| = \sqrt{x_1^2+x_2^2+\cdots+x_n^2} x=x12+x22++xn2

R n 中 点 a 的 δ 邻 域 为 U ( a , δ ) = { x ∣   x ∈ R n , ρ ( x , y ) < δ } \bold{R}^n中点a的\delta邻域为U(\bold{a}, \delta) = \{\bold{x}| \ \bold{x}\in \bold{R}^n, \bold{\rho(x, y)} < \delta\} RnaδU(a,δ)={x xRn,ρ(x,y)<δ}

多元函数

定义1 设 D D D R 2 \bold{R}^2 R2的一个非空子集,称映射 f : D → R f:D \to R f:DR为定义在D上的二元函数,通常记为 z = f ( x , y ) , ( x , y ) ∈ D z=f(x,y), (x,y) \in D z=f(x,y),(x,y)D z = f ( P ) , p ∈ D z=f(P), p \in D z=f(P),pD,
其中点集 D D D称为该函数点定义域, x x x y y y称为自变量, z z z称为因变量.
函数 f f f的值域,记作 f ( D ) f(D) f(D),即
f ( D ) = { z ∣   z = f ( x , y ) , ( x , y ) ∈ D } f(D) = \{z| \ z=f(x, y), (x, y) \in D\} f(D)={z z=f(x,y),(x,y)D}

三元函数: u = f ( x , y , z ) , ( x , y , z ) ∈ D u=f(x, y, z), (x, y, z) \in D u=f(x,y,z),(x,y,z)D
n n n元函数: u = f ( x 1 , x 2 , ⋯   , x n ) , ( x 1 , x 2 , ⋯   , x n ) ∈ D u = f(x_1, x_2, \cdots, x_n), (x_1, x_2, \cdots, x_n) \in D u=f(x1,x2,,xn),(x1,x2,,xn)D
简记作: u = f ( x ) , x = ( x 1 , x 2 , ⋯   , x n ) ∈ D u=f(\bold{x}), \bold{x}=(x_1, x_2, \cdots, x_n) \in D u=f(x),x=(x1,x2,,xn)D
或记为: u = f ( P ) , P ( x 1 , x 2 , ⋯   , x n ) ∈ D u=f(P), P(x_1, x_2, \cdots, x_n) \in D u=f(P),P(x1,x2,,xn)D
n ≥ 2 n \ge 2 n2时, n n n元函数统称为多元函数。
二元函数 z = f ( x , y ) z=f(x,y) z=f(x,y)图形的集合表示:
{ ( x , y , z ) ∣   z = f ( x , y ) , ( x , y ) ∈ D } \{(x,y,z)| \ z=f(x,y),(x,y) \in D\} {(x,y,z) z=f(x,y),(x,y)D}
n n n元函数的集合表示:
{ ( x 1 , x 2 , ⋯   , x n , u ) ∣   u = f ( x 1 , x 2 , ⋯   , x n ) , ( x 1 , x 2 , ⋯   , x n ) ∈ D } \{(x_1, x_2,\cdots, x_n, u)| \ u=f(x_1, x_2, \cdots, x_n), (x_1, x_2, \cdots, x_n) \in D\} {(x1,x2,,xn,u) u=f(x1,x2,,xn),(x1,x2,,xn)D}

二元函数的极限(二重极限)

二元函数 z = f ( x , y ) z=f(x,y) z=f(x,y) ( x , y ) → ( x 0 , y 0 ) (x,y) \to (x_0,y_0) (x,y)(x0,y0),即 P ( x , y ) → P 0 ( x 0 , y 0 ) P(x,y) \to P_0(x_0, y_0) P(x,y)P0(x0,y0)的极限.
定义2: 设二元函数 f ( P ) = f ( x , y ) f(P)=f(x,y) f(P)=f(x,y)的定义域为 D D D P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0) D D D的聚点.如果存在常数 A A A,对于任意给定的正数 ε \varepsilon ε,总存在正数 δ \delta δ,使得当点 P ( x , y ) ∈ D ∩ U ˚ ( P 0 , δ ) P(x,y) \in D \cap \mathring{U}(P_0, \delta) P(x,y)DU˚(P0,δ),都有
∣ f ( P ) − A ∣ = ∣ f ( x , y ) − A ∣ < ε |f(P) -A| = |f(x, y) - A| < \varepsilon f(P)A=f(x,y)A<ε
成立,那么就称常数A为函数 f ( x , y ) f(x, y) f(x,y) ( x , y ) → ( x 0 , y 0 ) (x, y) \to (x_0, y_0) (x,y)(x0,y0)的极限,记作
lim ⁡ ( x , y ) → ( x 0 , y 0 ) f ( x , y ) = A   或   f ( x , y ) → A ( ( x , y ) → ( x 0 , y 0 ) ) \lim_{(x,y) \to (x_0, y_0)}{f(x,y) = A} \ 或 \ f(x, y)\to A((x, y) \to (x_0, y_0)) (x,y)(x0,y0)limf(x,y)=A  f(x,y)A((x,y)(x0,y0))
也记作 lim ⁡ P − > P 0 f ( P ) = A   或   f ( P ) → A   ( P → P 0 ) \lim_{P->P_0}{f(P)} = A \ 或 \ f(P) \to A \ (P \to P0) P>P0limf(P)=A  f(P)A (PP0)

多元函数的连续性

定义3 设二元函数 f ( P ) = f ( x , y ) f(P) = f(x, y) f(P)=f(x,y)的定义域为 D D D P 0 ( x 0 , y 0 ) P_0(x_0, y_0) P0(x0,y0)为D的聚点,且 P 0 ∈ D P_0 \in D P0D. 如果 lim ⁡ ( x , y ) → ( x 0 , y 0 ) f ( x , y ) = f ( x 0 , y 0 ) \lim\limits_{(x, y) \to (x0, y0)}{f(x, y) = f(x_0, y_0)} (x,y)(x0,y0)limf(x,y)=f(x0,y0),那么称函数 f ( x , y ) f(x, y) f(x,y)在点 P 0 ( x 0 , y 0 ) P_0(x_0, y_0) P0(x0,y0)连续.
设函数 f ( x , y ) f(x, y) f(x,y) D D D上有定义, D D D内的每一点都是函数定义域的聚点.如果函数 f ( x , y ) f(x, y) f(x,y) D D D的每一点都连续,那么称函数 f ( x , y ) f(x, y) f(x,y) D D D上连续,或者称 f ( x , y ) f(x, y) f(x,y) D D D连续函数.

定义4 设函数 f ( x , y ) f(x, y) f(x,y)的定义域为 D , P ( x 0 , y 0 ) D,P(x_0, y_0) DP(x0,y0) D D D的聚点.如果函数 f ( x , y ) f(x, y) f(x,y)在点 P 0 ( x 0 , y 0 ) P_0(x_0, y_0) P0(x0,y0)不连续,那么称 P 0 ( x 0 , y 0 ) P_0(x_0, y_0) P0(x0,y0)为函数 f ( x , y ) f(x, y) f(x,y)间断点.

性质 1 (有界性与最大值最小值定理)在有界闭区域 D D D上的多元函数,必定在 D D D上有界,且能取得它的最大值和最小值.
性质2 (介值定理)在有界闭区域 D D D上的多元连续函数必定在 D D D上一致连续.
性质3 (一致连续性定理)在有界闭区域 D D D上的多元连续函数必定在 D D D上一致连续.

例 7 求 lim ⁡ ( x , y ) → ( 1 , 2 ) x + y x y \lim\limits_{(x, y) \to (1, 2)}{\dfrac{x + y} {xy}} (x,y)(1,2)limxyx+y.

例 8 求 lim ⁡ ( x , y ) → ( 0 , 0 ) x y + 1 − 1 x y \lim\limits_{(x, y) \to (0, 0)}{\dfrac{\sqrt{xy + 1} - 1}{xy}} (x,y)(0,0)limxyxy+1 1.

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值