高等数学笔记-苏德矿-第九章-重积分(Ⅱ)-三重积分

高等数学笔记-苏德矿

第九章-重积分(Ⅱ)-三重积分

第三节 三重积分的概念和性质

一、三重积分的典例

01 一些基本概念

(1) 立体的体密度

在这里插入图片描述

(2) 求立体V的质量

设有界闭区域立体 V V V 的密度 μ = f ( x , y , z ) \mu=f(x,y,z) μ=f(x,y,z) 连续,求立体 V V V 的质量。( 一个占据三维空间中区域 Q Q Q 的几何体,其密度为 f ( x , y , z ) f(x,y,z) f(x,y,z),那么其质量为多少? )

(3) 回顾定积分和二重积分的概念

求在三维区域上分布率非均匀的某种物理量 (或其它量) 的总量

分割—求和—求极限

02 推导过程

"分匀和精”

(1) 分割

用若干个曲面将立体 V V V 分割成 n n n 个小立体 Δ V 1 , Δ V 2 , ⋯   , Δ V i , ⋯   , Δ V n \Delta V_1,\Delta V_2,\cdots,\Delta V_i,\cdots,\Delta V_n ΔV1,ΔV2,,ΔVi,ΔVn

Δ V i \Delta V_i ΔVi 的体积仍用 Δ V i \Delta V_i ΔVi 表示, λ = max ⁡ { λ i : 1 ⩽ i ⩽ n } \lambda=\max \left\{\lambda_i:1\leqslant i\leqslant n\right\} λ=max{λi:1in}

(2) 取近似

∀ ( ξ i , η i , ς i ) ∈ Δ V i \forall \left(\xi_{i}, \eta_{i}, \varsigma_{i}\right) \in\Delta V_i (ξi,ηi,ςi)ΔVi Δ M i ≈ f ( ξ i , η i , ς i ) Δ V i , i = 1 , 2 , ⋯   , n \Delta M_i\approx f\left(\xi_{i}, \eta_{i}, \varsigma_{i}\right)\Delta V_i,i=1,2,\cdots,n ΔMif(ξi,ηi,ςi)ΔVi,i=1,2,,n

(3) 作和

M = ∑ i = 1 n Δ M i ≈ ∑ i = 1 n f ( ξ i , η i , ς i ) Δ V i M=\sum\limits_{i=1}^{n} \Delta M_i\approx\sum\limits_{i=1}^{n} f\left(\xi_{i}, \eta_{i}, \varsigma_{i}\right)\Delta V_i M=i=1nΔMii=1nf(ξi,ηi,ςi)ΔVi

(4) 取极限

lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i , η i , ς i ) Δ V i = M \lim\limits_{\lambda\rightarrow 0 }\sum\limits_{i=1}^{n} f\left(\xi_{i}, \eta_{i}, \varsigma_{i}\right)\Delta V_i=M λ0limi=1nf(ξi,ηi,ςi)ΔVi=M

二、三重积分的概念

01 定义

Ω \Omega Ω R 3 R^{3} R3 中的有界闭区域,函数 f ( x , y , z ) f(x, y, z) f(x,y,z) Ω \Omega Ω 上定义, I I I 为实数,若将区域 Δ Ω 1 , Δ Ω 2 , ⋯   , Δ Ω n \Delta \Omega_{1}, \Delta \Omega_{2}, \cdots, \Delta \Omega_{n} ΔΩ1,ΔΩ2,,ΔΩn,任取 ( ξ i , η i , ς i ) ∈ Δ Ω i \left(\xi_{i}, \eta_{i}, \varsigma_{i}\right) \in \Delta \Omega_{i} (ξi,ηi,ςi)ΔΩi

作和 ∑ i = 1 n f ( ξ i , η i , ς i ) Δ V i ( Δ V i 是 Δ Ω i 的 体 积 ) \displaystyle{ \sum_{i=1}^{n} f\left(\xi_{i}, \eta_{i}, \varsigma_{i}\right) \Delta V_{i}\quad(\Delta V_{i} 是 \Delta \Omega_{i} 的体积 ) }% i=1nf(ξi,ηi,ςi)ΔVi(ΔViΔΩi),总有下列极限存在且唯一(与立体的分法和点的取法无关):

lim ⁡ i → 0 ∑ i = 1 n f ( ξ i , η i , ς i ) Δ V i = I \displaystyle{ \lim _{i \rightarrow 0} \sum_{i=1}^{n} f\left(\xi_{i}, \eta_{i}, \varsigma_{i}\right) \Delta V_{i}=I }% i0limi=1nf(ξi,ηi,ςi)ΔVi=I ( 其中 λ = max ⁡ 1 ≤ i ≤ n { d i } , d i \lambda=\max \limits_{1 \leq i \leq n}\left\{d_{i}\right\}, d_{i} λ=1inmax{di},di 是小区域 Δ Ω i \Delta \Omega_{i} ΔΩi 的直径 ),

则称函数 f ( x , y , z ) f(x, y, z) f(x,y,z) Ω \Omega Ω 可积, I I I 称为 f f f Ω \Omega Ω三重积分,记为: ∭ Ω f ( x , y , z ) d V ( d V − 体 积 元 素 ) \displaystyle{ \iiint \limits_{\Omega} f(x, y, z) d V\quad(dV-体积元素) }% Ωf(x,y,z)dV(dV)

∭ Ω f ( x , y , z ) d V \iiint \limits_{\Omega} f(x, y, z) d V Ωf(x,y,z)dV 存在,则 ∭ Ω f ( x , y , z ) d x d y d z \iiint \limits_{\Omega} f(x, y, z) dxdydz Ωf(x,y,z)dxdydz

02 物理意义

一种物理意义(三维物体的质量

f ( x , y , z ) f(x,y,z) f(x,y,z) 表示占有三维空间区域 Q Q Q 的物体的质量密度函数,则

∭ Ω f ( x , y , z ) d V \iiint \limits_{\Omega} f(x, y, z) d V Ωf(x,y,z)dV 给出了物体的质量。

∭ Ω f ( x , y , z ) d V \iiint \limits_{\Omega} f(x, y, z) d V Ωf(x,y,z)dV 存在,且 f ( x , y , z ) ⩾ 0 f(x,y,z)\geqslant0 f(x,y,z)0,则 ∭ Ω f ( x , y , z ) d V \iiint \limits_{\Omega} f(x, y, z) d V Ωf(x,y,z)dV 表示密度为 f ( x , y , z ) f(x,y,z) f(x,y,z) 立体 V V V 的质量 M M M

∭ Ω 1 d V = ∭ Ω d V = V \iiint \limits_{\Omega} 1 d V=\iiint \limits_{\Omega} d V=V Ω1dV=ΩdV=V

03 可积的充分条件

u = f ( x , y , z ) u=f(x,y,z) u=f(x,y,z) 在有界闭区域 Ω \Omega Ω 上连续,则 f ( x , y , z ) f(x,y,z) f(x,y,z) V V V 上可积,反之不成立。

三、三重积分的性质

  • 具有二重积分所有性质,有线性、可加性、单调性和中值定理

  • ∭ Ω 1 d V = V Ω ( Ω 的 体 积 ) \iiint \limits_{\Omega} 1 d V=V_{\Omega}\quad(\Omega的体积) Ω1dV=VΩ(Ω)

  • 三重积分中值定理
    若 f ( x , y , z ) 在 有 界 闭 区 域 V 上 连 续 , 则 ∃ P ∗ ( x ∗ , y ∗ , z ∗ ) ∈ Ω , 使 ∭ Ω f ( x , y , z ) d V = f ( x ∗ , y ∗ , z ∗ ) V , 即   f ( x ∗ , y ∗ , z ∗ ) = ∭ Ω f ( x , y , z ) d V V , 称 为   f ( x , y , z )   在 V 上 的 平 均 值 \begin{aligned} & 若 f(x,y,z) 在有界闭区域 V 上连续,则 \exist P^*(x^*,y^*,z^*)\in\Omega,\\ & 使 \iiint \limits_{\Omega} f(x, y, z) d V=f(x^*,y^*,z^*)V,\\ & 即\ f(x^*,y^*,z^*)=\frac{\iiint \limits_{\Omega} f(x, y, z) d V}{V},称为\ f(x, y, z)\ 在V上的平均值 \end{aligned} f(x,y,z)VP(x,y,z)Ω使Ωf(x,y,z)dV=f(x,y,z)V f(x,y,z)=VΩf(x,y,z)dV f(x,y,z) V

第四节 三重积分的计算

一、在直角坐标系下的计算公式

直角坐标系下, ∭ Ω f ( x , y , z ) d V = ∭ Ω f ( x , y , z ) d x d y d z \displaystyle{ \iiint \limits_{\Omega} f(x, y, z) d V=\iiint \limits_{\Omega} f(x, y, z) d x d y d z }% Ωf(x,y,z)dV=Ωf(x,y,z)dxdydz .

01 三类区域

(1) x y xy xy 型区域

设立体 V V V 是有界闭区域,垂直于 x O y xOy xOy 平面(平行于 O z Oz Oz 轴)的任何一条直线与立体 V V V 的边界曲面至多有两个交点(立体边界是母线平行于 O z Oz Oz 轴的柱面除外),称立体 V V V x y xy xy 型区域。
V = { ( x , y , z ) ∣ z 1 ( x , y ) ⩽ z ⩽ z 2 ( x , y )    ,   ( x , y ) ∈ σ x y }    或 写 成 V :   z 1 ( x , y ) ⩽ z ⩽ z 2 ( x , y ) ( x , y ) ∈ σ x y \begin{aligned} & V=\left\{(x, y, z) \mid z_{1}(x,y) \leqslant z \leqslant z_{2}(x,y)\ \ ,\ (x,y)\in\sigma_{xy} \right\}\ \ 或写成\\ & V:\ z_{1}(x,y) \leqslant z \leqslant z_{2}(x,y)\\ & \quad\quad\quad\quad (x,y)\in\sigma_{xy} \end{aligned} V={(x,y,z)z1(x,y)zz2(x,y)  , (x,y)σxy}  V: z1(x,y)zz2(x,y)(x,y)σxy

M M M 看成平面薄片 σ x y \sigma_{xy} σxy 的质量,任取一点 ( x , y ) ∈ σ x y (x,y)\in\sigma_{xy} (x,y)σxy(该点对应的实际上是线段,此处将线段质量看作是该点的质量)
μ ( x , y ) = ∫ z 1 ( x , y ) z 2 ( x , y ) f ( x , y , z ) d z \mu(x,y)=\int _{z_1(x,y)}^{z_2(x,y)}f(x,y,z)dz μ(x,y)=z1(x,y)z2(x,y)f(x,y,z)dz
则将三重积分转化为二重积分,有
∭ Ω f ( x , y , z ) d V = ∬ σ x y μ ( x , y ) d x d y = ∬ σ x y [ ∫ z 1 ( x , y ) z 2 ( x , y ) f ( x , y , z ) d z ] d x d y = ∬ σ x y d x d y ∫ z 1 ( x , y ) z 2 ( x , y ) f ( x , y , z ) d z \begin{aligned} & \iiint \limits_{\Omega} f(x, y, z) d V=\iint \limits_{\sigma_{xy}}\mu(x,y)dxdy=\\ & \iint \limits_{\sigma_{xy}}[\int _{z_1(x,y)}^{z_2(x,y)}f(x,y,z)dz]dxdy=\iint \limits_{\sigma_{xy}}dxdy\int _{z_1(x,y)}^{z_2(x,y)}f(x,y,z)dz \end{aligned} Ωf(x,y,z)dV=σxyμ(x,y)dxdy=σxy[z1(x,y)z2(x,y)f(x,y,z)dz]dxdy=σxydxdyz1(x,y)z2(x,y)f(x,y,z)dz
对于二重积分,存在 x x x 型区域和 y y y 型区域不同的情况,接下来对二重积分就两种情况进行讨论

σ x y \sigma_{xy} σxy x x x 型区域,
σ : φ 1 ( x ) ⩽ z ⩽ φ 2 ( x )    ,   V :   z 1 ( x , y ) ⩽ z ⩽ z 2 ( x , y )    a ⩽ x ⩽ b φ 1 ( x ) ⩽ z ⩽ φ 2 ( x )     a ⩽ x ⩽ b ∭ V f ( x , y , z ) d V = ∫ a b d x ∫ φ 1 ( x ) φ 2 ( x ) d y ∫ z 1 ( x , y ) z 2 ( x , y ) f ( x , y , z ) d z \begin{aligned} & \sigma:\varphi_1(x)\leqslant z\leqslant\varphi_2(x)\ \ ,\ V:\ z_{1}(x,y) \leqslant z \leqslant z_{2}(x,y)\\ & \quad\quad\quad\ \ a\leqslant x\leqslant b\quad\quad\quad\quad\quad\quad \varphi_1(x)\leqslant z\leqslant\varphi_2(x) \\ & \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\ \ \ a\leqslant x\leqslant b\\ & \iiint \limits_{V} f(x, y, z) d V=\int_{a}^{b}dx\int_{\varphi_1(x)}^{\varphi_2(x)}dy\int _{z_1(x,y)}^{z_2(x,y)}f(x,y,z)dz \end{aligned} σ:φ1(x)zφ2(x)   V: z1(x,y)zz2(x,y)  axbφ1(x)zφ2(x)   axbVf(x,y,z)dV=abdxφ1(x)φ2(x)dyz1(x,y)z2(x,y)f(x,y,z)dz
σ x y \sigma_{xy} σxy y y y 型区域,
σ : φ 1 ( y ) ⩽ z ⩽ φ 2 ( y )    ,   V :   z 1 ( x , y ) ⩽ z ⩽ z 2 ( x , y )    c ⩽ y ⩽ d φ 1 ( y ) ⩽ z ⩽ φ 2 ( y )     c ⩽ y ⩽ d ∭ V f ( x , y , z ) d V = ∫ c d d y ∫ φ 1 ( y ) φ 2 ( y ) d x ∫ z 1 ( x , y ) z 2 ( x , y ) f ( x , y , z ) d z \begin{aligned} & \sigma:\varphi_1(y)\leqslant z\leqslant\varphi_2(y)\ \ ,\ V:\ z_{1}(x,y) \leqslant z \leqslant z_{2}(x,y)\\ & \quad\quad\quad\ \ c\leqslant y\leqslant d\quad\quad\quad\quad\quad\quad \varphi_1(y)\leqslant z\leqslant\varphi_2(y) \\ & \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\ \ \ c\leqslant y\leqslant d\\ & \iiint \limits_{V} f(x, y, z) d V=\int_{c}^{d}dy\int_{\varphi_1(y)}^{\varphi_2(y)}dx\int _{z_1(x,y)}^{z_2(x,y)}f(x,y,z)dz \end{aligned} σ:φ1(y)zφ2(y)   V: z1(x,y)zz2(x,y)  cydφ1(y)zφ2(y)   cydVf(x,y,z)dV=cddyφ1(y)φ2(y)dxz1(x,y)z2(x,y)f(x,y,z)dz
核心思想:直角坐标系下的投影法

在这里插入图片描述

02 投影法(柱线法)

在这里插入图片描述

Ω \Omega Ω 是以曲面 z = z 1 ( x , y ) \mathrm{z}=\mathrm{z}_{1}(x, y) z=z1(x,y) 为底,曲面 z = z 2 ( x , y ) \mathrm{z}=\mathrm{z}_{2}(x, y) z=z2(x,y) 为顶,而侧面是母线平行 z z z 轴的柱面所围成的区域。

Ω \Omega Ω x y x y xy 平面上的投影区域为 D D D ,则 Ω \Omega Ω 可表示为( x y x y xy 型正则区域): { ( x , y , z ) ∣ z 1 ( x , y ) ⩽ z ⩽ z 2 ( x , y )   ,   ( x , y ) ∈ D } \displaystyle{ \left\{(x, y, z) \mid z_{1}(x, y) \leqslant z \leqslant z_{2}(x, y)\ ,\ (x, y) \in D\right\} }% {(x,y,z)z1(x,y)zz2(x,y) , (x,y)D}

从质量角度求三重积分,则 f ( x , y , z ) f(x,y,z) f(x,y,z) 为密度,对 ( x , y ) ∈ D (x,y)\in D (x,y)D μ ( x , y ) = ∫ z 1 ( x , y ) z 2 ( x , y ) f ( x , y , z ) d z \displaystyle{ \mu(x, y)=\int_{z_{1}(x, y)}^{z_{2}(x, y)} f(x, y, z) d z }% μ(x,y)=z1(x,y)z2(x,y)f(x,y,z)dz

给出了 Ω \Omega Ω 内由 z 1 ( x , y ) z_1(x,y) z1(x,y) z 2 ( x , y ) z_2(x,y) z2(x,y) 的线段上所分布的质量密度。

物体的总质量就是: ∬ D ( ∫ z 1 ( x , y ) z 2 ( x , y ) f ( x , y , z ) d z ) d x d y \displaystyle{ \iint \limits_{D}\left(\int_{z_{1}(x, y)}^{z_{2}(x, y)} f(x, y, z) d z\right) d x d y }% D(z1(x,y)z2(x,y)f(x,y,z)dz)dxdy

从而有: ∭ Ω f ( x , y , z ) d x d y d z = ∬ D d x d y ∫ z 1 ( x , y ) z 2 ( x , y ) f ( x , y , z ) d z \displaystyle{ \iiint \limits_{\Omega} f(x, y, z) d x d y d z=\iint \limits_{D} d x d y \int_{z_{1}(x, y)}^{z_{2}(x, y)} f(x, y, z) d z }% Ωf(x,y,z)dxdydz=Ddxdyz1(x,y)z2(x,y)f(x,y,z)dz

02 平面截割法(截面法)

在这里插入图片描述

∭ V f ( x , y , z ) d V \iiint \limits_{V} f(x, y, z) d V Vf(x,y,z)dV 存在, ∀   M ( x , y , z ) ∈ V \forall\ M(x,y,z)\in V  M(x,y,z)V,立体 V V V 可表示为: V : ( x , y ) ∈ D z    c ⩽ z ⩽ d V:(x,y)\in D_z\\ \quad\ \ c\leqslant z\leqslant d V:(x,y)Dz  czd ,则三重积分满足:
∭ V f ( x , y , z ) d V = ∫ c d d z ∬ D z f ( x , y , z ) d x d y \iiint \limits_{V} f(x, y, z) d V=\int_{c}^{d}dz\iint\limits_{D_z}f(x,y,z)dxdy Vf(x,y,z)dV=cddzDzf(x,y,z)dxdy
如图所示进行如下分析:

设立体 V V V,在 z z z 轴上投影区间为 [ c , d ] [c,d] [c,d],即 V V V 介于平面 z = c \mathrm{z}=c z=c z = d \mathrm{z}=d z=d 之间,取 O z Oz Oz 轴上 c , d c,d c,d 点间任意一点 z z z

过点 z z z 作垂直于 O z Oz Oz 轴的截面,截立体得截面 D z D_z Dz(截面上任意一点得竖坐标均为 z z z)。因为 z z z c , d c,d c,d 间任取一点,

则立体 V V V 可看作 c , d c,d c,d 间所有截平面 D z D_z Dz 累加所组成的立体,则立体 V V V 可表示为如下 z z z 型空间区域
V = { ( x , y , z ) ∣ ( x , y ) ∈ D z   ,   c ⩽ z ⩽ d } V=\left\{(x, y, z) \mid(x, y) \in D_{z}\ ,\ c \leqslant z \leqslant d\right\} V={(x,y,z)(x,y)Dz , czd}
现从质量角度对三重积分进行解释,假设 f ( x , y , z ) ⩾ 0 f(x,y,z)\geqslant0 f(x,y,z)0,从而三重积分满足:
∭ V f ( x , y , z ) d V = M    (   M   是 密 度 为   μ ( x , y , z )   的 立 体   V   的 质 量 ) \iiint \limits_{V} f(x, y, z) d V=M\ \ (\ M\ 是密度为\ \mu(x,y,z)\ 的立体\ V\ 的质量) Vf(x,y,z)dV=M  ( M  μ(x,y,z)  V )
M M M 看成位于 O z Oz Oz [ c , d ] [c,d] [c,d] 区间上的一个细棒的质量,设 μ ( z ) \mu(z) μ(z) 是立体 V V V 的线密度函数,任给 z ∈ [ c , d ] z\in[c,d] z[c,d],有
μ ( z ) = ∬ D z f ( x , y , z ) d x d y   ⇒ ∭ V f ( x , y , z ) d V = M = ∫ c d μ ( z ) d z = ∬ D z f ( x , y , z ) d x d y = ∫ c d [ ∬ D z f ( x , y , z ) d x d y ] d z = ∫ c d d z ∬ D z f ( x , y , z ) d x d y \begin{aligned} & \mu(z)=\iint\limits_{D_z}f(x,y,z)dxdy \ \Rightarrow \\ & \iiint \limits_{V} f(x, y, z) d V=M=\int_{c}^{d}\mu(z)dz=\iint\limits_{D_z}f(x,y,z)dxdy=\\ & \int_{c}^{d}[\iint\limits_{D_z}f(x,y,z)dxdy]dz=\int_{c}^{d}dz\iint\limits_{D_z}f(x,y,z)dxdy \end{aligned} μ(z)=Dzf(x,y,z)dxdy Vf(x,y,z)dV=M=cdμ(z)dz=Dzf(x,y,z)dxdy=cd[Dzf(x,y,z)dxdy]dz=cddzDzf(x,y,z)dxdy
什么时候用平面截割法?

f ( x , y , z ) = f ( z ) f(x,y,z)=f(z) f(x,y,z)=f(z),即函数 f f f 仅是 z z z 的函数且截面区域 D z D_z Dz 的面积容易计算(圆、椭圆、三角、矩形等),

此时一定要用平面截割法(不用矿爷真的会哭好吗)!三重积分转化为:
∭ V f ( x , y , z ) d V = ∭ V f ( z ) d V = ∫ c d d z ∬ D z f ( z ) d x d y = ∫ c d S D z ⋅ f ( z ) d z \iiint \limits_{V} f(x, y, z) d V=\iiint \limits_{V} f(z) d V=\int_{c}^{d}dz\iint\limits_{D_z}f(z)dxdy=\int_{c}^{d}S_{D_z}\cdot f(z)dz Vf(x,y,z)dV=Vf(z)dV=cddzDzf(z)dxdy=cdSDzf(z)dz
同理,对于 f ( x , y , z ) = f ( x )   或   f ( x , y , z ) = f ( y ) f(x,y,z)=f(x)\ 或\ f(x,y,z)=f(y) f(x,y,z)=f(x)  f(x,y,z)=f(y) 有相似的结论。

三、三重积分的变量代换

与二重积分的变量代换类似,若 ∭ V f ( x , y , z ) d V \iiint \limits_{V} f(x, y, z) d V Vf(x,y,z)dV 存在,

设变换 {   x   =   x   ( u , v , w )   y   =   y   ( u , v , w )   z   =   z   ( u , v , w ) \begin{cases}\ x\ =\ x\ (u,v,w) \\ \ y\ =\ y\ (u,v,w) \\ \ z\ =\ z\ (u,v,w) \end{cases}  x = x (u,v,w) y = y (u,v,w) z = z (u,v,w) 有连续偏导数,且满足: J = ∂ ( x , y , z ) ∂ ( u , v , w ) = ∣ x u y u z u x v y v z v x w y w z w ∣ ≠ 0 \displaystyle{ J=\frac{\partial(x, y, z)}{\partial(u, v, w)}=\left|\begin{array}{lll} x_{u} & y_{u} & z_{u} \\ x_{v} & y_{v} & z_{v} \\ x_{w} & y_{w} & z_{w} \end{array}\right| \neq 0 }% J=(u,v,w)(x,y,z)=xuxvxwyuyvywzuzvzw=0

f ( x , y , z ) f(x,y,z) f(x,y,z) 在立体区域 V V V 内连续,那么
∭ V f ( x , y , z ) d V = ∭ V u v w f ( x   ( u , v , w ) , y   ( u , v , w ) , z   ( u , v , w ) ) ⋅ ∣ ∂ ( x , y , z ) ∂ ( u , v , w ) ∣   d u d v d w \iiint \limits_{V} f(x, y, z) d V=\iiint \limits_{V_{uvw}} f(x\ (u,v,w), y\ (u,v,w), z\ (u,v,w))\cdot|\frac{\partial(x,y,z)}{\partial(u,v,w)}|\ dudvdw Vf(x,y,z)dV=Vuvwf(x (u,v,w),y (u,v,w),z (u,v,w))(u,v,w)(x,y,z) dudvdw

四、柱面坐标系下的计算

在这里插入图片描述

01 柱面坐标的变量代换

这个坐标系实际上就是 x y xy xy 坐标转变为极坐标,即变换公式为 { x = r cos ⁡ θ y = r sin ⁡ θ z = z \left\{\begin{array}{c}x=r \cos \theta \\ y=r \sin \theta \\ z=z\end{array}\right. x=rcosθy=rsinθz=z

由于雅可比行列式满足: ∂ ( x , y , z ) ∂ ( r , θ , z ) = ∣ cos ⁡ θ sin ⁡ θ 0 − r sin ⁡ θ r cos ⁡ θ 0 0 0 1 ∣ = r \displaystyle{ \frac{\partial(x, y, z)}{\partial(r, \theta, z)}=\left|\begin{array}{ccc} \cos \theta & \sin \theta & 0 \\ -r \sin \theta & r \cos \theta & 0 \\ 0 & 0 & 1 \end{array}\right|=r }% (r,θ,z)(x,y,z)=cosθrsinθ0sinθrcosθ0001=r

得到柱面坐标积分公式: ∭ Ω f ( x , y , z ) d V = ∭ Ω f ( r cos ⁡ θ , r sin ⁡ θ , z ) r d r d θ d z \displaystyle{ \iiint \limits_{\Omega} f(x, y, z) d V=\iiint \limits_{\Omega} f(r \cos \theta, r \sin \theta, z) r d r d \theta d z }% Ωf(x,y,z)dV=Ωf(rcosθ,rsinθ,z)rdrdθdz

注意,事实上,在具体计算时,可以用柱线法或截面法得到 D D D ( 或 D z D_z Dz ) 的二重积分,再转化为极坐标。

02 柱面坐标的投影法分析

若被积函数含有 x 2 + y 2 x^2+y^2 x2+y2 或立体 V V V x O y xOy xOy 平面上的投影区域是圆域或者圆域的一部分。

{   x   =   r cos ⁡ θ   y   =   r sin ⁡ θ   z   =      z \begin{cases}\ x\ =\ r\cos\theta \\ \ y\ =\ r\sin\theta \\ \ z\ =\ \ \ \ z\end{cases}  x = rcosθ y = rsinθ z =    z ,称为柱面坐标变换,其本质为平面上的极坐标变换。

下面用投影法推导分析:
设 立 体 V : z 1 ( x , y ) ⩽ z ⩽ z 1 ( x , y ) ( x , y ) ∈ σ ∭ Ω f ( x , y , z ) d V = ∬ σ [   ∫ z 1 ( x , y ) z 1 ( x , y ) f ( x , y , z ) d z   ] d x d y 对 此 二 重 积 分 进 行 极 坐 标 变 换 , 所 谓 的 柱 面 坐 标 变 换 , 本 质 就 是 平 面 极 坐 标 变 换 x = r cos ⁡ θ   ,   y = r sin ⁡ θ 若   σ   为   θ   型 区 域 , 则   σ   :   r 1 ( θ ) ⩽ r ⩽ r 2 ( θ )    α ⩽ θ ⩽ β 原 三 重 积 分 = ∫ α β d θ ∫ r 1 ( θ ) r 2 ( θ ) [ ∫ z 1 ( r cos ⁡ θ , r sin ⁡ θ ) z 2 ( r cos ⁡ θ , r sin ⁡ θ ) f ( r cos ⁡ θ , r sin ⁡ θ , z )   ]   r d r   = ∫ α β d θ ∫ r 1 ( θ ) r 2 ( θ ) r d r ∫ z 1 ( r cos ⁡ θ , r sin ⁡ θ ) z 2 ( r cos ⁡ θ , r sin ⁡ θ ) f ( r cos ⁡ θ , r sin ⁡ θ , z )   d z \begin{aligned} & 设立体V:z_1(x,y)\leqslant z\leqslant z_1(x,y)\\ & \quad\quad\quad\quad\quad\quad\quad (x,y)\in\sigma\\ & \iiint \limits_{\Omega} f(x, y, z) d V=\iint \limits_{\sigma} [\ \int _{z_1(x,y)}^{z_1(x,y)}f(x,y,z)dz\ ] dxdy\\ & 对此二重积分进行极坐标变换,\\ & 所谓的柱面坐标变换,本质就是平面极坐标变换\\ & x=r\cos\theta \ , \ y=r\sin\theta\\ & 若\ \sigma\ 为\ \theta\ 型区域,则\ \sigma\ : \ r_1(\theta)\leqslant r\leqslant r_2(\theta)\\ & \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\ \ \alpha\leqslant\theta\leqslant\beta\\ & 原三重积分=\int _{\alpha}^{\beta}d\theta\int _{r_1(\theta)}^{r_2(\theta)}[\int _{z_1(r\cos\theta,r\sin\theta)}^{z_2(r\cos\theta,r\sin\theta)}f(r\cos\theta,r\sin\theta,z)\ ]\ rdr\\ & \quad\quad\quad\quad\ =\int _{\alpha}^{\beta}d\theta\int _{r_1(\theta)}^{r_2(\theta)}rdr\int _{z_1(r\cos\theta,r\sin\theta)}^{z_2(r\cos\theta,r\sin\theta)}f(r\cos\theta,r\sin\theta,z)\ dz\\ \end{aligned} V:z1(x,y)zz1(x,y)(x,y)σΩf(x,y,z)dV=σ[ z1(x,y)z1(x,y)f(x,y,z)dz ]dxdyx=rcosθ , y=rsinθ σ  θ  σ : r1(θ)rr2(θ)  αθβ=αβdθr1(θ)r2(θ)[z1(rcosθ,rsinθ)z2(rcosθ,rsinθ)f(rcosθ,rsinθ,z) ] rdr =αβdθr1(θ)r2(θ)rdrz1(rcosθ,rsinθ)z2(rcosθ,rsinθ)f(rcosθ,rsinθ,z) dz

03 柱面坐标变换总结

∭ V f ( x , y , z ) d V \iiint \limits_{V} f(x, y, z) d V Vf(x,y,z)dV 存在,被积函数含有 x 2 + y 2 x^2+y^2 x2+y2 或立体 V V V x O y xOy xOy 平面上的投影区域是圆域或者圆域的一部分(一般是圆周和直线围成的区域)。那么,令 {   x   =   r cos ⁡ θ   y   =   r sin ⁡ θ   z   =      z \begin{cases}\ x\ =\ r\cos\theta \\ \ y\ =\ r\sin\theta \\ \ z\ =\ \ \ \ z\end{cases}  x = rcosθ y = rsinθ z =    z ,且立体 V V V x y xy xy 型区域,

则立体 V V V 可表示为 V = { ( x , y , z ) ∣ z 1 ( x , y ) ⩽ z ⩽ z 2 ( x )    ,   ( x , y ) ∈ σ x y } V=\left\{(x, y, z) \mid z_{1}(x,y) \leqslant z \leqslant z_{2}(x)\ \ ,\ (x,y)\in\sigma_{xy} \right\} V={(x,y,z)z1(x,y)zz2(x)  , (x,y)σxy}

然后将 σ \sigma σ 写成 θ \theta θ 型区域 σ = { ( r , θ ) ∣ r 1 ( θ ) ⩽ r ⩽ r 2 ( θ )    ,   α ⩽ θ ⩽ β } \sigma=\left\{(r, \theta) \mid r_{1}(\theta) \leqslant r \leqslant r_{2}(\theta)\ \ ,\ \alpha\leqslant\theta\leqslant\beta \right\} σ={(r,θ)r1(θ)rr2(θ)  , αθβ}

下曲面 z = z 1 ( x , y ) = z 1 ( r cos ⁡ θ , r sin ⁡ θ ) z=z_1(x,y)=z_1(r\cos\theta,r\sin\theta) z=z1(x,y)=z1(rcosθ,rsinθ),上曲面 z = z 2 ( x , y ) = z 2 ( r cos ⁡ θ , r sin ⁡ θ ) z=z_2(x,y)=z_2(r\cos\theta,r\sin\theta) z=z2(x,y)=z2(rcosθ,rsinθ)

∭ V f ( x , y , z ) d V = ∫ α β d θ ∫ r 1 ( θ ) r 2 ( θ ) d r ∫ z 1 ( r cos ⁡ θ , r sin ⁡ θ ) z 2 ( r cos ⁡ θ , r sin ⁡ θ ) f ( r cos ⁡ θ , r sin ⁡ θ , z )   r   d z \displaystyle{\iiint \limits_{V} f(x, y, z) d V=\int _{\alpha}^{\beta}d\theta\int _{r_1(\theta)}^{r_2(\theta)}dr\int _{z_1(r\cos\theta,r\sin\theta)}^{z_2(r\cos\theta,r\sin\theta)}f(r\cos\theta,r\sin\theta,z)\ r \ dz}% Vf(x,y,z)dV=αβdθr1(θ)r2(θ)drz1(rcosθ,rsinθ)z2(rcosθ,rsinθ)f(rcosθ,rsinθ,z) r dz

若被积函数中含 y 2 + z 2 y^2+z^2 y2+z2 或立体 V V V y O z yOz yOz 平面上的投影区域是圆域或者圆域的一部分。

那么,令 {   y   =   r cos ⁡ θ   z   =   r sin ⁡ θ   x   =      x \begin{cases}\ y\ =\ r\cos\theta \\ \ z\ =\ r\sin\theta \\ \ x\ =\ \ \ \ x\end{cases}  y = rcosθ z = rsinθ x =    x ,同理可推导类似结论。

五、球面坐标系下的计算

在这里插入图片描述

01 球面坐标的变量代换

设点 M ( x , y , z ) M(x, y, z) M(x,y,z) 是空间一点,引进坐标 ( ρ , φ , θ ) (\rho, \varphi, \theta) (ρ,φ,θ)

ρ = ∥ O M → ∥ \rho=\|\overrightarrow{O M}\| ρ=OM φ : O M → \varphi: \overrightarrow{O M} φ:OM 与z轴正向的夹角, θ : O P → \theta: \overrightarrow{O P} θ:OP x x x 轴正向的夹角,

ρ \rho ρ φ \varphi φ θ \theta θ 满足 0 ⩽ ρ ⩽ + ∞    ,    0 ⩽ φ ⩽ π    ,    0 ⩽ θ ⩽ 2 π   或 − π ⩽ θ ⩽ π 0 \leqslant \rho \leqslant+\infty\ \ ,\ \ 0 \leqslant \varphi \leqslant \pi\ \ ,\ \ 0 \leqslant \theta \leqslant 2 \pi\ 或-\pi\leqslant\theta\leqslant\pi 0ρ+  ,  0φπ  ,  0θ2π πθπ

坐标变换关系式 ⟹   { x = ρ sin ⁡ φ cos ⁡ θ y = ρ sin ⁡ φ sin ⁡ θ z = ρ cos ⁡ φ \quad\Longrightarrow\ \left\{\begin{array}{c} x=\rho \sin \varphi \cos \theta \\ y=\rho \sin \varphi \sin \theta \\ z=\rho \cos \varphi \end{array}\right.  x=ρsinφcosθy=ρsinφsinθz=ρcosφ

这样建立的坐标系称为球面坐标系,得到的坐标 ( ρ , φ , θ ) (\rho, \varphi, \theta) (ρ,φ,θ) 称为 M M M 的球面坐标。
由 于 雅 可 比 行 列 式    ∂ ( x , y , z ) ∂ ( ρ , φ , θ ) = ∣ sin ⁡ φ cos ⁡ θ sin ⁡ φ sin ⁡ θ cos ⁡ φ ρ cos ⁡ φ cos ⁡ θ ρ cos ⁡ φ sin ⁡ θ − ρ sin ⁡ φ − ρ sin ⁡ φ sin ⁡ θ ρ sin ⁡ φ cos ⁡ θ 0 ∣ = ρ 2 sin ⁡ φ 导 出   ∭ Ω f ( x , y , z ) d V = ∭ Ω ∗ f ( ρ sin ⁡ φ cos ⁡ θ , ρ sin ⁡ φ sin ⁡ θ , ρ cos ⁡ φ ) ρ 2 sin ⁡ φ d ρ d φ d θ \begin{aligned} & 由于雅可比行列式\ \ \frac{\partial(x, y, z)}{\partial(\rho, \varphi, \theta)} =\left|\begin{array}{ccc} \sin \varphi \cos \theta & \sin \varphi \sin \theta & \cos \varphi \\ \rho \cos \varphi \cos \theta & \rho \cos \varphi \sin \theta & -\rho \sin \varphi \\ -\rho \sin \varphi \sin \theta & \rho \sin \varphi \cos \theta & 0 \end{array}\right| =\rho^{2} \sin \varphi\\ & 导出\ \iiint \limits_{\Omega} f(x, y, z) d V =\iiint \limits_{\Omega^{*}} f(\rho \sin \varphi \cos \theta, \rho \sin \varphi \sin \theta, \rho \cos \varphi) \rho^{2} \sin \varphi d \rho d \varphi d \theta \end{aligned}   (ρ,φ,θ)(x,y,z)=sinφcosθρcosφcosθρsinφsinθsinφsinθρcosφsinθρsinφcosθcosφρsinφ0=ρ2sinφ Ωf(x,y,z)dV=Ωf(ρsinφcosθ,ρsinφsinθ,ρcosφ)ρ2sinφdρdφdθ
使用球坐标时, ρ = \rho= ρ= 常数:球面 φ = \varphi= φ= 常数: 锥面 θ = \theta= θ= 常数: 平面

且球面和锥面的中心在原点,平面过 z z z 轴。

在这里插入图片描述

注意,围成区域的部分曲面有上述特点,或被积函数含 x 2 + y 2 + z 2 x^{2}+y^{2}+z^{2} x2+y2+z2,可考虑用球坐标。

02 球面坐标的二次柱面变换分析

∭ V f ( x , y , z ) d V \iiint \limits_{V} f(x, y, z) d V Vf(x,y,z)dV 存在,被积函数含有 x 2 + y 2 + z 2 x^2+y^2+z^2 x2+y2+z2 或立体 V V V 是球体或者球体的一部分。

采用一组变换,首先,令 {   x   =   r cos ⁡ θ   y   =   r sin ⁡ θ   z   =      z \begin{cases}\ x\ =\ r\cos\theta \\ \ y\ =\ r\sin\theta \\ \ z\ =\ \ \ \ z\end{cases}  x = rcosθ y = rsinθ z =    z ,则 x 2 + y 2 + z 2 = r 2 + z 2 x^2+y^2+z^2=r^2+z^2 x2+y2+z2=r2+z2(看成 r   ,   θ   ,   z r\ ,\ \theta\ ,\ z r , θ , z 函数)

然后,令 {   r   = ρ sin ⁡ φ   z   = ρ cos ⁡ φ   θ   =      θ \begin{cases}\ r\ =\rho\sin\varphi \\ \ z\ =\rho\cos\varphi \\ \ \theta\ =\ \ \ \ \theta\end{cases}  r =ρsinφ z =ρcosφ θ =    θ ,则 x 2 + y 2 + z 2 = r 2 + z 2 = ρ 2 x^2+y^2+z^2=r^2+z^2=\rho^2 x2+y2+z2=r2+z2=ρ2

综上可以看作一次变换,令 {   x   =   ρ sin ⁡ φ cos ⁡ θ   y   =   ρ sin ⁡ φ sin ⁡ θ   z   =      ρ cos ⁡ φ \begin{cases}\ x\ =\ \rho\sin\varphi\cos\theta \\ \ y\ =\ \rho\sin\varphi\sin\theta \\ \ z\ =\ \ \ \ \rho\cos\varphi\end{cases}  x = ρsinφcosθ y = ρsinφsinθ z =    ρcosφ ,称为球面坐标变换,此时, x 2 + y 2 + z 2 = ρ 2 x^2+y^2+z^2=\rho^2 x2+y2+z2=ρ2

这样建立的坐标系称为球面坐标系,得到的坐标 ( ρ , φ , θ ) (\rho, \varphi, \theta) (ρ,φ,θ) 称为 M M M 的球面坐标。

03 球面坐标系与球面坐标

球面坐标系与球面坐标一种记忆模式:

{   x   =   r cos ⁡ θ   y   =   r sin ⁡ θ   r   =   ρ sin ⁡ φ   z   =   ρ cos ⁡ φ \begin{cases}\ x\ =\ r\cos\theta \\ \ y\ =\ r\sin\theta \\ \ r\ =\ \rho\sin\varphi \\ \ z\ =\ \rho\cos\varphi\end{cases}  x = rcosθ y = rsinθ r = ρsinφ z = ρcosφ {   x   =   ρ sin ⁡ φ cos ⁡ θ   y   =   ρ sin ⁡ φ sin ⁡ θ   z   =      ρ cos ⁡ φ \begin{cases}\ x\ =\ \rho\sin\varphi\cos\theta \\ \ y\ =\ \rho\sin\varphi\sin\theta \\ \ z\ =\ \ \ \ \rho\cos\varphi\end{cases}  x = ρsinφcosθ y = ρsinφsinθ z =    ρcosφ 称为球面坐标变换。

x 2 + y 2 + z 2 = ρ 2    ⇒    x 2 + y 2 + z 2 = ρ   且   x 2 + y 2 + z 2 = R 2    ⇒    ρ = R x^2+y^2+z^2=\rho^2\ \ \Rightarrow\ \ \sqrt{x^2+y^2+z^2}=\rho\ 且 \ x^2+y^2+z^2=R^2 \ \ \Rightarrow\ \ \rho=R x2+y2+z2=ρ2    x2+y2+z2 =ρ  x2+y2+z2=R2    ρ=R

球面坐标系与球面坐标代换总结:

若被积函数含有 x 2 + y 2 + z 2 x^2+y^2+z^2 x2+y2+z2 或立体 V V V 是球体或者球体的一部分,

一般是球面与锥面或球面与平面或锥面与平面围成的立体,用球面坐标变换。

04 球面坐标系下三个最简单的方程表示的曲面

( 1 )   ρ = R    ( R ⩾ 0 , 常 数 )   表 示 以   O   点 为 心 ,   R   为 半 径 的 球 面   ⇔   ρ 2 = R 2   ⇔   x 2 + y 2 + z 2 = R 2 ( 2 )   φ = φ 0    ( 0 ⩽ φ 0 ⩽ π , 常 数 )   表 示 一 个 半 锥 面 , O z 轴 正 向 与 锥 面 母 线 的 夹 角 为 φ 0 该 方 程 转 化 为 空 间 直 角 坐 标 系 为 : x 2 + y 2 − z 2 tan ⁡ 2 φ 0 = 0 ( 3 )   θ = θ 0    ( 0 ⩽ θ ⩽ 2 π   或 − π ⩽ θ ⩽ π , 常 数 )   表 示   y O z   右 半 平 面 该 方 程 转 化 为 空 间 直 角 坐 标 系 为 : θ = π 2 \begin{aligned} & (1)\ \rho=R\ \ (R\geqslant0,常数)\ 表示以\ O\ 点为心,\ R\ 为半径的球面 \ \Leftrightarrow\ \rho^2=R^2 \ \Leftrightarrow\ x^2+y^2+z^2=R^2 \\ & (2)\ \varphi=\varphi_0\ \ (0\leqslant\varphi_0\leqslant\pi,常数)\ 表示一个半锥面, Oz轴正向与锥面母线的夹角为\varphi_0\\ & \quad\quad该方程转化为空间直角坐标系为:x^2+y^2-z^2\tan^2\varphi_0=0\\ & (3)\ \theta=\theta_0\ \ (0 \leqslant \theta \leqslant 2 \pi\ 或-\pi\leqslant\theta\leqslant\pi,常数)\ 表示\ yOz\ 右半平面 \\ & \quad\quad该方程转化为空间直角坐标系为:\theta=\frac{\pi}{2}\\ \end{aligned} (1) ρ=R  (R0)  O  R   ρ2=R2  x2+y2+z2=R2(2) φ=φ0  (0φ0π) Oz线φ0:x2+y2z2tan2φ0=0(3) θ=θ0  (0θ2π πθπ)  yOz :θ=2π

05 球面坐标变换下的三重积分

∭ V f ( x , y , z ) d V \iiint \limits_{V} f(x, y, z) d V Vf(x,y,z)dV 中,用球面坐标变换 {   x   =   ρ sin ⁡ φ cos ⁡ θ   y   =   ρ sin ⁡ φ sin ⁡ θ   z   =      ρ cos ⁡ φ \begin{cases}\ x\ =\ \rho\sin\varphi\cos\theta \\ \ y\ =\ \rho\sin\varphi\sin\theta \\ \ z\ =\ \ \ \ \rho\cos\varphi\end{cases}  x = ρsinφcosθ y = ρsinφsinθ z =    ρcosφ ,核心:寻找 d V dV dV d θ   d φ   d ρ d\theta\ d\varphi\ d\rho dθ dφ dρ 的关系。

本质:对三重积分式进行两次柱面坐标积分变换。

第一次变换,令 {   x   =   r cos ⁡ θ   y   =   r sin ⁡ θ   z   =      z \begin{cases}\ x\ =\ r\cos\theta \\ \ y\ =\ r\sin\theta \\ \ z\ =\ \ \ \ z\end{cases}  x = rcosθ y = rsinθ z =    z ,则 ∭ V f ( x , y , z ) d V = ∭ V r θ z f ( r cos ⁡ θ , r sin ⁡ θ , z ) r   d θ   d r   d z \iiint \limits_{V} f(x, y, z) d V=\iiint \limits_{V_{r\theta z}} f(r\cos\theta,r\sin\theta, z)r\ d\theta\ dr\ dz Vf(x,y,z)dV=Vrθzf(rcosθ,rsinθ,z)r dθ dr dz

第二次变换,令 {   r   = ρ sin ⁡ φ   z   = ρ cos ⁡ φ   θ   =      θ \begin{cases}\ r\ =\rho\sin\varphi \\ \ z\ =\rho\cos\varphi \\ \ \theta\ =\ \ \ \ \theta\end{cases}  r =ρsinφ z =ρcosφ θ =    θ ,则 ∭ V r θ z f ( r cos ⁡ θ , r sin ⁡ θ , z ) r   d θ   d r   d z = ∭ V θ φ ρ f ( ρ sin ⁡ φ cos ⁡ θ , ρ sin ⁡ φ sin ⁡ θ , ρ cos ⁡ φ ) ρ sin ⁡ φ ⋅ ρ   d θ   d φ   d ρ \iiint \limits_{V_{r\theta z}} f(r\cos\theta,r\sin\theta, z)r\ d\theta\ dr\ dz=\iiint \limits_{V_{\theta\varphi\rho}} f(\rho\sin\varphi\cos\theta,\rho\sin\varphi\sin\theta, \rho\cos\varphi)\rho\sin\varphi\cdot \rho\ d\theta\ d\varphi\ d\rho Vrθzf(rcosθ,rsinθ,z)r dθ dr dz=Vθφρf(ρsinφcosθ,ρsinφsinθ,ρcosφ)ρsinφρ dθ dφ dρ

综上,经过球面坐标变换, ∭ V f ( x , y , z ) d V = ∭ V θ φ ρ f ( ρ sin ⁡ φ cos ⁡ θ , ρ sin ⁡ φ sin ⁡ θ , ρ cos ⁡ φ ) ρ 2 sin ⁡ φ   d θ   d φ   d ρ \iiint \limits_{V} f(x, y, z) d V=\iiint \limits_{V_{\theta\varphi\rho}} f(\rho\sin\varphi\cos\theta,\rho\sin\varphi\sin\theta, \rho\cos\varphi)\rho^2\sin\varphi\ d\theta\ d\varphi\ d\rho Vf(x,y,z)dV=Vθφρf(ρsinφcosθ,ρsinφsinθ,ρcosφ)ρ2sinφ dθ dφ dρ

要求上述积分化成球面坐标下的累次积分,先积 ρ \rho ρ,其次积 φ \varphi φ,最后积 θ \theta θ

即对 ∀ M ( ρ , φ , θ ) ∈ V \forall M(\rho,\varphi,\theta)\in V M(ρ,φ,θ)V,将坐标用不等式表示, V : ρ 1 ( θ , φ ) ⩽ ρ ⩽ ρ 2 ( θ , φ )    φ 1 ( θ ) ⩽ z ⩽ φ 2 ( θ )   α ⩽ θ ⩽ β V:\rho_1(\theta,\varphi)\leqslant\rho\leqslant\rho_2(\theta,\varphi)\\ \quad\ \ \varphi_1(\theta)\leqslant z\leqslant\varphi_2(\theta)\\ \quad\ \alpha\leqslant\theta\leqslant\beta V:ρ1(θ,φ)ρρ2(θ,φ)  φ1(θ)zφ2(θ) αθβ (累次积分变换的核心),

则三重积分 ∭ V f ( x , y , z ) d V = ∫ α β d θ ∫ φ 1 ( θ ) φ 2 ( θ ) φ d φ ∫ ρ 1 ( θ , φ ) ρ 1 ( θ , φ ) f ( ρ sin ⁡ φ cos ⁡ θ , ρ sin ⁡ φ sin ⁡ θ , ρ cos ⁡ φ ) ρ 2 sin ⁡ φ d ρ \iiint \limits_{V} f(x, y, z) d V=\int_{\alpha}^{\beta}d\theta\int_{\varphi_1(\theta)}^{\varphi_2(\theta)}\varphi d\varphi \int_{\rho_1(\theta,\varphi)}^{\rho_1(\theta,\varphi)} f(\rho\sin\varphi\cos\theta,\rho\sin\varphi\sin\theta, \rho\cos\varphi)\rho^2\sin\varphi d\rho Vf(x,y,z)dV=αβdθφ1(θ)φ2(θ)φdφρ1(θ,φ)ρ1(θ,φ)f(ρsinφcosθ,ρsinφsinθ,ρcosφ)ρ2sinφdρ .

在这里插入图片描述

接下来研究对于不等式表示的 θ \theta θ 区域、 φ \varphi φ 区域和 ρ \rho ρ 的取值如何确定。

对于 ∀ M ( ρ , φ , θ ) ∈ V \forall M(\rho,\varphi,\theta)\in V M(ρ,φ,θ)V,先找出立体 V V V x O y xOy xOy 平面上投影的的 σ \sigma σ 区域,将该 σ \sigma σ 区域处理成 θ \theta θ 区域。

找出 σ \sigma σ 在平面极坐标系下 θ \theta θ 的范围 [ α , β ] [\alpha,\beta] [α,β],则 α ⩽ θ ⩽ β \alpha\leqslant\theta\leqslant\beta αθβ

平面极坐标下的射线 θ = θ \theta=\theta θ=θ O z Oz Oz 轴组成一个垂直于平面 x O y xOy xOy 的截面,记为平面 θ O z \theta Oz θOz

连接 O M ∈ θ O z OM\in \theta Oz OMθOz φ \varphi φ 的几何意义是由 O z Oz Oz 轴向 O M OM OM 旋转所得的夹角。

设射线 O N ON ON 最开始与 O z Oz Oz 轴重合, N ∈ θ O z N\in\theta Oz NθOz 恒成立,将射线 O N ON ON O z Oz Oz 轴开始沿半平面 θ O z \theta Oz θOz O M OM OM 旋转,

第一次接触立体 V V V 产生的交点,记此时的夹角 φ = φ 1 \varphi=\varphi_1 φ=φ1;最后离开立体 V V V 的交点,记此时的夹角 φ = φ 2 \varphi=\varphi_2 φ=φ2

显然有, φ 1 ⩽ φ ⩽ φ 2 \varphi_1\leqslant\varphi\leqslant\varphi_2 φ1φφ2 。在多数题目情况下, φ 1 \varphi_1 φ1 为常数甚至为 0 0 0

于是,寻找清晰直观的平面进行研究,若 α ⩽ π 2 ⩽ β \alpha\leqslant\frac{\pi}{2}\leqslant\beta α2πβ θ = π 2 \theta=\frac{\pi}{2} θ=2π y O z yOz yOz 右半平面)与立体的截面找到求出范围。

线段 O M OM OM 与截面区域的边界有两个交点,分别对应大小不同的极径,

如果极径小的点始终落在同一个曲面上,则这个曲面称为下曲面 ρ = ρ 1 ( θ , φ ) \rho=\rho_1(\theta,\varphi) ρ=ρ1(θ,φ)

如果极径大的点始终落在同一个曲面上,则这个曲面称为上曲面 ρ = ρ 2 ( θ , φ ) \rho=\rho_2(\theta,\varphi) ρ=ρ2(θ,φ)

因此有, ρ 1 ( θ , φ ) ⩽ ρ ⩽ ρ 2 ( θ , φ ) \rho_1(\theta,\varphi)\leqslant\rho\leqslant\rho_2(\theta,\varphi) ρ1(θ,φ)ρρ2(θ,φ)

  • 0
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值