数据治理:再说一个90%的人没搞清的事

本文探讨了数据清理和数据整理之间的区别,指出两者在数据处理中的不同作用。数据清理侧重于去除错误、无效和重复数据,而数据整理则关注于将清理后的数据转换为符合业务需求的形式。在开始数据清理和整理前,需要明确业务案例、调查数据源和进行数据概要分析。文章还介绍了数据清理和整理的具体方法和技术,强调了这些步骤在确保数据质量中的重要性。
摘要由CSDN通过智能技术生成

作者|石秀峰  全文共3368个字,建议阅读8分钟

前言

数据清理和数据整理到底是不是一回事?

在做数据清理或整理之前需要搞清楚的事情?

数据清理的方法和技术

数据整理的方法和技术


前言

之前的一篇爆文:《数据治理:90%的人搞不清的事情》,对数据管理领域容易混淆的8组概念进行了澄清,避免在实际使用中“混用”、“套用”、“随便用”......

其实,数据领域容易混淆的概念又何止这8组,今天再给大家介绍一组:数据清理VS数据整理。

数据清理、数据整理也统称数据处理或数据准备,它是数据工作最基础的部分,不论数据仓库、数据治理、数据分析、数据挖掘,都离不开数据清理和整理,这也是每个数据项目耗费工作量最大的任务,平均占据了数据项目的60%以上的工作量。

数据清理和整理是数据分析、挖掘的前提,也是数据治理工作的重点内容。由于这两项任务大多数情况下是放在一起做的,因此很多人不知道或没有根本在意过这两个名词到底是不是一回事?即使你在一些专业的数据管理书籍中也难以找到他们的区别。

那,数据清理 = 数据整理 吗?

可能有人会说,“把事干好不就得了,纠结概念干吗?”

但是,概念都搞不清楚,有可能把事情做好吗?

数据治理的名词术语,我要和你死磕到底!

数据清理和数据整理到底是不是一回事?

清理,整理一字之差,两个“动词”,代表了两个截然不同的操作。

如果你不清楚数据清理和数据整理的区别,我先给你举个例子:清理房间VS整理房间。

一般我们说,“XX,你去把房间清理一下”,意思是让你去把房间做个大扫除,垃圾清理掉。清理是要扔东西,清理后,东西没了。

而如果说,“XX,你去把房间整理一下“,意思中不仅含有打

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值