LLM-Planner:针对大语言模型具身智体的少样本落地规划

23年3月来自Ohio State U的论文“LLM-Planner: Few-Shot Grounded Planning for Embodied Agents with Large Language Models”。

本研究的重点是使用大语言模型 (LLM) 作为具身智体的规划器,这些智体可以遵循自然语言指令在视觉感知的环境中完成复杂任务。现有方法的高数据成本和低样本效率,阻碍了执行多任务并能快速学习新任务多功能智体的开发。这项工作提出一种 LLM-Planner,利用大语言模型的强大功能为具身智体进行少样本规划。进一步提出了一种简单但有效的方法来增强物理落地的 LLM,生成和更新基于当前环境的规划。在 ALFRED 数据集上(”ALFRED: A Benchmark for Interpreting Grounded Instructions for Everyday Tasks“)的实验表明,该方法可以实现非常有竞争力的少样本性能:尽管使用不到 0.5% 的配对训练数据,LLM-Planner 仍实现了与完整数据训练的基线可媲美的性能。现有的方法几乎无法在相同的少样本设置下成功完成任何任务。

人们一直希望构建多功能的具身智体,例如,能够遵循自然语言命令执行不同任务以及快速学习执行新任务的机器人。然而,当代语言驱动的智体仍然需要大量标记示例(成对的语言指令和黄金轨迹)来学习每项任务,这非常昂贵,并且阻碍了真正多功能智体的开发 [34, 29, 25, 8, 37, 17, 40, 27, 11, 2, 16]。最近,一系列开创性的工作表明,大语言模型 (LLM)(例如 GPT-3 [4])作为具身 AI 智体的少样本规划器具有巨大的潜力 [1, 13, 21, 35]。配备基于 LLM 规划器的智体已经开始展示通过一些训练示例学习新任务的能力。

尽管现有工作在概念验证方面前景光明,但它们仍然存在重大限制,可能会阻碍其在有限的评估设置之外的大规模应用。例如,SayCan [1] 是使用 LLM 进行具身指令遵循的先驱工作之一,它在只有 15 种目标类型的两个环境中进行了评估。假设智体能够预先枚举所有可接受的技能(即 [动作,目标] 对),因此它可以使用 LLM 对技能进行排名。在将智体部署到新环境时,这一假

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值