模型结构:
模型创建:
dev_update_off ()
dev_close_window ()
InputWidth := 128
InputHeight := 128
InputDepth := 3
*输入层
create_dl_layer_input ('input', [InputWidth,InputHeight,InputDepth], [], [], DLLayerInput)
*卷积层1
create_dl_layer_convolution (DLLayerInput, 'convolution1', [3,3], 1, 1, 64, 1, 'half_kernel_size', 'relu', \
['weight_filler','weight_filler_variance_norm','weight_filler_const_val','bias_term'],\
['xavier','norm_in',0.0,'true'], DLLayerConvolution1)
*BN层1
create_dl_layer_batch_normalization (DLLayerConvolution1, 'batchnorm1', 'auto', 0.0001, 'relu', \
['weight_filler','weight_filler_variance_norm','weight_filler_const_val','bias_filler','bias_filler_variance_norm','bias_filler_const_val','bias_term','upper_bound'], \
['xavier','norm_in',1.0,'const','norm_in',0.0,'true',6.0], DLLayerBatchNorm1)
*卷积层2
create_dl_layer_convolution (DLLayerBatchNorm1, 'convolution2', [3,3], 1, 1, 64, 1, 'half_kernel_size', 'relu', \
['weight_filler','weight_filler_variance_norm','weight_filler_const_val','bias_term'], \
['xavier','norm_in',0.0,'true'], DLLayerConvolution2)
*BN层2
create_dl_layer_batch_normalization (DLLayerConvolution2, 'batchnorm2', 'auto', 0.0001, 'relu', \
['weight_filler','weight_filler_variance_norm','weight_filler_const_val','bias_filler','bias_filler_variance_norm','bias_filler_const_val','bias_term','upper_bound'], \
['xavier','norm_in',1.0,'const','norm_in',0.0,'true',6.0],DLLayerBatchNorm2)
*池化层2
create_dl_layer_pooling (DLLayerBatchNorm2, 'pooling2', [2,2], 2, 'implicit', 'average', [], [], DLLayerPooling2)
*dropout层2
create_dl_layer_dropout (DLLayerPooling2, 'dropout2', 0.2, [], [], DLLayerDropOut2)
*卷积层3
create_dl_layer_convolution (DLLayerDropOut2, 'convolution3', [3,3], 1, 1, 128, 1, 'half_kernel_size', 'relu', \
['weight_filler','weight_filler_variance_norm','weight_filler_const_val','bias_term'], \
['xavier','norm_in',0.0,'true'], DLLayerConvolution3)
*BN层3
create_dl_layer_batch_normalization (DLLayerConvolution3, 'batchnorm3', 'auto', 0.0001, 'relu', \
['weight_filler','weight_filler_variance_norm','weight_filler_const_val','bias_filler', 'bias_filler_variance_norm','bias_filler_const_val','bias_term','upper_bound&#