Halcon 创建自定义网络模型【VGG16】

本文介绍了如何在Halcon中创建基于VGG16的自定义网络模型,涉及计算机视觉和深度学习领域,利用CNN进行图像处理。
摘要由CSDN通过智能技术生成

模型结构:
在这里插入图片描述
在这里插入图片描述

模型创建:

dev_update_off ()
dev_close_window ()

InputWidth := 128
InputHeight := 128
InputDepth := 3

*输入层
create_dl_layer_input ('input', [InputWidth,InputHeight,InputDepth], [], [], DLLayerInput)
*卷积层1
create_dl_layer_convolution (DLLayerInput, 'convolution1', [3,3], 1, 1, 64, 1, 'half_kernel_size', 'relu', \
                             ['weight_filler','weight_filler_variance_norm','weight_filler_const_val','bias_term'],\
                             ['xavier','norm_in',0.0,'true'], DLLayerConvolution1)
*BN层1
create_dl_layer_batch_normalization (DLLayerConvolution1, 'batchnorm1', 'auto', 0.0001, 'relu', \
                                     ['weight_filler','weight_filler_variance_norm','weight_filler_const_val','bias_filler','bias_filler_variance_norm','bias_filler_const_val','bias_term','upper_bound'], \
                                     ['xavier','norm_in',1.0,'const','norm_in',0.0,'true',6.0], DLLayerBatchNorm1)
*卷积层2
create_dl_layer_convolution (DLLayerBatchNorm1, 'convolution2', [3,3], 1, 1, 64, 1, 'half_kernel_size', 'relu', \
                             ['weight_filler','weight_filler_variance_norm','weight_filler_const_val','bias_term'], \
                             ['xavier','norm_in',0.0,'true'], DLLayerConvolution2)
*BN层2
create_dl_layer_batch_normalization (DLLayerConvolution2, 'batchnorm2', 'auto', 0.0001, 'relu', \
                                     ['weight_filler','weight_filler_variance_norm','weight_filler_const_val','bias_filler','bias_filler_variance_norm','bias_filler_const_val','bias_term','upper_bound'], \
                                     ['xavier','norm_in',1.0,'const','norm_in',0.0,'true',6.0],DLLayerBatchNorm2)
*池化层2
create_dl_layer_pooling (DLLayerBatchNorm2, 'pooling2', [2,2], 2, 'implicit', 'average', [], [], DLLayerPooling2)
*dropout层2
create_dl_layer_dropout (DLLayerPooling2, 'dropout2', 0.2, [], [], DLLayerDropOut2)


*卷积层3
create_dl_layer_convolution (DLLayerDropOut2, 'convolution3', [3,3], 1, 1, 128, 1, 'half_kernel_size', 'relu', \
                             ['weight_filler','weight_filler_variance_norm','weight_filler_const_val','bias_term'], \
                             ['xavier','norm_in',0.0,'true'], DLLayerConvolution3)
*BN层3
create_dl_layer_batch_normalization (DLLayerConvolution3, 'batchnorm3', 'auto', 0.0001, 'relu', \
                                     ['weight_filler','weight_filler_variance_norm','weight_filler_const_val','bias_filler', 'bias_filler_variance_norm','bias_filler_const_val','bias_term','upper_bound&#
Halcon自定义训练深度学习模型,可以按照以下步骤进行: 1. 数据准备:首先,你需要准备好用于训练的数据集。这包括标注好的图像和对应的标签。确保数据集具有足够的多样性和覆盖性。 2. 模型选择:根据你的任务需求和数据集特点,选择适合的深度学习模型架构。Halcon支持常见的深度学习框架(如TensorFlow和Caffe),你可以在这些框架中选择合适的模型进行训练。 3. 数据预处理:对于深度学习模型的训练,通常需要进行数据预处理,包括图像尺寸调整、数据增强、归一化等操作。你可以使用Halcon提供的图像处理功能对数据进行预处理。 4. 模型训练:使用选定的深度学习框架,在Halcon外部进行模型训练。你可以使用TensorFlow或Caffe等框架提供的API和工具进行模型训练。根据框架的文档和示例,设置好训练参数,加载数据集,开始训练。 5. 导入模型:在模型训练完成后,将训练好的模型导入到Halcon中进行图像处理任务。Halcon提供了接口和函数,用于加载和使用深度学习模型。 6. 模型推理:使用导入的模型进行图像处理任务。你可以将待处理的图像输入到模型中,进行推理得到结果。根据任务需求,可以使用Halcon提供的函数进行后续的处理和分析。 需要注意的是,Halcon虽然提供了对深度学习模型的支持,但深度学习的训练过程主要在外部进行。Halcon更多地用于模型的部署和应用。因此,在自定义训练深度学习模型时,你需要结合Halcon和外部深度学习框架进行相关操作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

多巴胺耐受

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值