Halcon深度学习-笔记

本文介绍了Halcon深度学习在分类任务中的应用,详细阐述了数据集预处理、训练和评估的过程。内容包括数据集的读取、分割、预处理,训练参数设置,模型训练与评估,以及关键算子的作用和参数含义。
摘要由CSDN通过智能技术生成

Halcon深度学习知识点

分类(‘classification’):

在这里插入图片描述

判断一张图片是什么,一张图片是一种类型,得到的结果:类型名称+概率

目标检测(‘detection’):

能够定位一张图中的目标位置和目标的个数
在这里插入图片描述

语义分割(‘segmentation’):
在这里插入图片描述

直接分割出图片中目标的像素轮廓

**异常检测(anomaly_detection):**用异常检测来做,只训练ok图片;

雾里看花:因为目标检测有个弊端,自然缺陷类别会很多而且不规则,缺陷样本很难收集,聪明的客户是不会认可这种方式的,因为如果忽然出现其他类别的缺陷,目标检测未必就能检测出来,存在漏检的风险;
但是跟客户讲解,如果用异常检测来做,只训练ok图片,跟ok不一样的就会被挑出来,客户更能够接受)

分类

根据Halcon例子学习分类的各个细节:

classify_pill_defects_deep_learning_1_preprocess

classify_pill_defects_deep_learning_2_train

classify_pill_defects_deep_learning_3_evaluate

classify_pill_defects_deep_learning_4_infer

主要记录各个算子的作用和参数意义

数据集预处理(Dataset preprocessing)

read_dl_dataset_classification:

根据本地的整理好的图片文件生成数据格式: DLDataset

格式:

* DLDataset
* {
   
*     'image_dir'         : Common base path of all images
*     'class_names'[]     : Tuple of strings
*     'class_ids'[]       : Tuple of integers [0, ..., |ClassNames|-1]
*     'samples'[]         : Tuple of dictionaries
*     {
   
*         'image_file_name'    : File path relative to 'image_dir' (including the file name)
*   
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

多巴胺耐受

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值