Halcon深度学习知识点
分类(‘classification’):
判断一张图片是什么,一张图片是一种类型,得到的结果:类型名称+概率
目标检测(‘detection’):
能够定位一张图中的目标位置和目标的个数
语义分割(‘segmentation’):
直接分割出图片中目标的像素轮廓
**异常检测(anomaly_detection):**用异常检测来做,只训练ok图片;
雾里看花:因为目标检测有个弊端,自然缺陷类别会很多而且不规则,缺陷样本很难收集,聪明的客户是不会认可这种方式的,因为如果忽然出现其他类别的缺陷,目标检测未必就能检测出来,存在漏检的风险;
但是跟客户讲解,如果用异常检测来做,只训练ok图片,跟ok不一样的就会被挑出来,客户更能够接受)
分类
根据Halcon例子学习分类的各个细节:
classify_pill_defects_deep_learning_1_preprocess
classify_pill_defects_deep_learning_2_train
classify_pill_defects_deep_learning_3_evaluate
classify_pill_defects_deep_learning_4_infer
主要记录各个算子的作用和参数意义
数据集预处理(Dataset preprocessing)
read_dl_dataset_classification:
根据本地的整理好的图片文件生成数据格式: DLDataset
格式:
* DLDataset
* {
* 'image_dir' : Common base path of all images
* 'class_names'[] : Tuple of strings
* 'class_ids'[] : Tuple of integers [0, ..., |ClassNames|-1]
* 'samples'[] : Tuple of dictionaries
* {
* 'image_file_name' : File path relative to 'image_dir' (including the file name)
*