避坑一:冗长提示词污染关键词
-
问题原因
• 单条提示词超过200字可能导致焦点偏移、过度思考或逻辑混乱,干扰大模型准确响应。
• 多任务混杂会降低模型执行效率(类比“让员工一次性处理十件事”)。 -
解决方案
• 分步拆解:将复杂需求拆解为多个简单问题,分步提问。
◦ 例:分析互联网金融现状(含历史背景、社会影响等)并生成图表时,先拆分任务,逐步生成内容。
• 保留核心关键词:仅保留必要指令,其余由模型自由发挥。
◦ 若回复遗漏信息(如国内外案例),再通过新提示词补充交互。 -
附加提醒
• 单次对话输出限制为2000-4000中文字符,避免要求过长内容。
• 模型无法精准控制字数(如“不高于100字”可能超限),需了解此局限性。
避坑二:复杂句式与模糊表达
-
错误示例与改进
• 模糊提问:如“能不能帮我写点关于这个的东西?”
◦ 改进:直接明确需求,例如“列举五个国内知名电动车品牌”。
• 冗余背景:如“我是职场新人,公司主营XX,需与总裁磋商XX领域(我不了解)……”
◦ 改进:精简为干练指令,如“设计乙方磋商方案要点(领域:XX)”。 -
关键原则
• 提问需简洁切中重点,避免冗长铺垫。
避坑三:滥用专业术语与否定句式
- 调整
• 专业术语:如“解释量子纠缠”,需改为通俗语言(如“用日常语言描述量子粒子间的特殊关联”)。
• 否定句式:如“不要用复杂公式”,会增加模型理解成本。
◦ 改进:正向表达,如“请用基础概念解释”。
避坑四:数据处理指令不清晰
- 典型问题
• 模糊指令:如“处理文件中的数据”。 - 改进方案
• 明确具体要求,例如“提取Excel文件中A列的数字,计算平均值并生成统计图表”。
总结
• 四大避坑核心:精简提示词、明确指令、通俗表达、避免冗余。
• 交互原则:以“领导下达指令”的方式直接、清晰传递需求,减少干扰信息。