deepseek使用四大避坑

避坑一:冗长提示词污染关键词

  1. 问题原因
    • 单条提示词超过200字可能导致焦点偏移、过度思考或逻辑混乱,干扰大模型准确响应。
    • 多任务混杂会降低模型执行效率(类比“让员工一次性处理十件事”)。

  2. 解决方案
    分步拆解:将复杂需求拆解为多个简单问题,分步提问。
    ◦ 例:分析互联网金融现状(含历史背景、社会影响等)并生成图表时,先拆分任务,逐步生成内容。
    保留核心关键词:仅保留必要指令,其余由模型自由发挥。
    ◦ 若回复遗漏信息(如国内外案例),再通过新提示词补充交互。

  3. 附加提醒
    • 单次对话输出限制为2000-4000中文字符,避免要求过长内容。
    • 模型无法精准控制字数(如“不高于100字”可能超限),需了解此局限性。

避坑二:复杂句式与模糊表达

  1. 错误示例与改进
    模糊提问:如“能不能帮我写点关于这个的东西?”
    改进:直接明确需求,例如“列举五个国内知名电动车品牌”。
    冗余背景:如“我是职场新人,公司主营XX,需与总裁磋商XX领域(我不了解)……”
    改进:精简为干练指令,如“设计乙方磋商方案要点(领域:XX)”。

  2. 关键原则
    • 提问需简洁切中重点,避免冗长铺垫。

避坑三:滥用专业术语与否定句式

  1. 调整
    专业术语:如“解释量子纠缠”,需改为通俗语言(如“用日常语言描述量子粒子间的特殊关联”)。
    否定句式:如“不要用复杂公式”,会增加模型理解成本。
    改进:正向表达,如“请用基础概念解释”。

避坑四:数据处理指令不清晰

  1. 典型问题
    • 模糊指令:如“处理文件中的数据”。
  2. 改进方案
    • 明确具体要求,例如“提取Excel文件中A列的数字,计算平均值并生成统计图表”。

总结
• 四大避坑核心:精简提示词、明确指令、通俗表达、避免冗余
• 交互原则:以“领导下达指令”的方式直接、清晰传递需求,减少干扰信息。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值