1.5有哪些文本表示模型?它们各有什么优缺点?

05 文本表示模型

场景描述

文本是一类非常重要的非结构化数据,如何表示文本数据一直是机器学习领 域的一个重要研究方向。

知识点

词袋模型(Bag of Words),TF-IDF(Term Frequency-Inverse Document Frequency),主题模型(Topic Model),词嵌入模型(Word Embedding)

问题 有哪些文本表示模型?它们各有什么优缺点?

分析与解答

■ 词袋模型和N-gram模型

最基础的文本表示模型是词袋模型。顾名思义,就是将每篇文章看成一袋子 词,并忽略每个词出现的顺序。具体地说,就是将整段文本以词为单位切分开, 然后每篇文章可以表示成一个长向量,向量中的每一维代表一个单词,而该维对 应的权重则反映了这个词在原文章中的重要程度。常用TF-IDF来计算权重,公式 为
                                                      TF-IDF(t,d)=TF(t,d)×IDF(t) ,(1.5)

其中TF(t,d)为单词t在文档d中出现的频率,IDF(t)是逆文档频率,用来衡量单词t对 表达语义所起的重要性,表示为:
在这里插入图片描述
                                                                                                                                                                  (1.6)
直观的解释是,如果一个单词在非常多的文章里面都出现,那么它可能是一个比 较通用的词汇,对于区分某篇文章特殊语义的贡献较小,因此对权重做一定惩 罚。

将文章进行单词级别的划分有时候并不是一种好的做法,比如英文中的natural language processing(自然语言处理)一词,如果将natural,language,processing这 3个词拆分开来,所表达的含义与三个词连续出现时大相径庭。通常,可以将连续 出现的n个词(n≤N)组成的词组(N-gram)也作为一个单独的特征放到向量表示 中去,构成N-gram模型。另外,同一个词可能有多种词性变化,却具有相似的含 义。在实际应用中,一般会对单词进行词干抽取(Word Stemming)处理,即将不 同词性的单词统一成为同一词干的形式。

■ 主题模型

主题模型用于从文本库中发现有代表性的主题(得到每个主题上面词的分布 特性),并且能够计算出每篇文章的主题分布。

■ 词嵌入与深度学习模型

词嵌入是一类将词向量化的模型的统称,核心思想是将每个词都映射成低维 空间(通常K=50~300维)上的一个稠密向量(Dense Vector)。K维空间的每一 维也可以看作一个隐含的主题,只不过不像主题模型中的主题那样直观。

由于词嵌入将每个词映射成一个K维的向量,如果一篇文档有N个词,就可以 用一个N×K维的矩阵来表示这篇文档,但是这样的表示过于底层。在实际应用 中,如果仅仅把这个矩阵作为原文本的表示特征输入到机器学习模型中,通常很 难得到令人满意的结果。因此,还需要在此基础之上加工出更高层的特征。在传 统的浅层机器学习模型中,一个好的特征工程往往可以带来算法效果的显著提 升。而深度学习模型正好为我们提供了一种自动地进行特征工程的方式,模型中 的每个隐层都可以认为对应着不同抽象层次的特征。从这个角度来讲,深度学习 模型能够打败浅层模型也就顺理成章了。卷积神经网络和循环神经网络的结构在 文本表示中取得了很好的效果,主要是由于它们能够更好地对文本进行建模,抽 取出一些高层的语义特征。与全连接的网络结构相比,卷积神经网络和循环神经 网络一方面很好地抓住了文本的特性,另一方面又减少了网络中待学习的参数, 提高了训练速度,并且降低了过拟合的风险。

另外博主收藏这些年来看过或者听过的一些不错的常用的上千本书籍,没准你想找的书就在这里呢,包含了互联网行业大多数书籍和面试经验题目等等。有人工智能系列(常用深度学习框架TensorFlow、pytorch、keras。NLP、机器学习,深度学习等等),大数据系列(Spark,Hadoop,Scala,kafka等),程序员必修系列(C、C++、java、数据结构、linux,设计模式、数据库等等)以下是部分截图

更多文章见本原创微信公众号「五角钱的程序员」,我们一起成长,一起学习。一直纯真着,善良着,温情地热爱生活。关注回复【电子书】即可领取哦

在这里插入图片描述

在这里插入图片描述
给大家推荐一个Github,上面非常非常多的干货:https://github.com/XiangLinPro/IT_book

<think>好的,用户现在问的是“语音识别大模型有哪些”,我需要整理这方面的信息。首先,用户之前问过通义万相,可能对AI大模型有一定了解,所以这次希望了解语音识别领域的模型。我需要先确定用户的需求是什么,可能他们想了解当前主流的语音识别技术,或者是想选型用于项目应用。 接下来,我需要回忆常见的语音识别大模型。比如OpenAI的Whisper,这是比较知名的,支持多语言。还有Meta的wav2vec系列,特别是wav2vec 2.0和3.0,它们在无监督学习方面有优势。谷歌的USM(Universal Speech Model)也是重要的,支持100多种语言。国内的比如阿里云、腾讯、百度的模型,比如Paraformer,可能用户更关心国内的技术。 然后,要考虑模型的分类,比如端到端模型、多语言支持、是否开源等。用户可能需要了解这些模型优缺点和应用场景,比如Whisper适合通用场景,而wav2vec适合需要高准确率的专业领域。还要注意参数规模,比如参数量大的模型可能需要更多资源,用户可能关心部署的可行性。 另外,用户可能想知道这些模型的最新进展,比如多模态融合或者参数高效微调技术。比如SpeechGPT结合语音和文本,或者像VALL-E这样的零样本语音生成模型。这些信息能帮助用户了解趋势。 需要确保回答的结构清晰,分点列出,可能用表格对比。同时,注意使用中文,避免使用Markdown,但保持条目清楚。还要检查是否有遗漏的重要模型,比如NVIDIA的Nemo,或者DeepSpeech等,但可能更关注当前主流和最新的模型。 最后,要提醒用户选择模型时的考虑因素,比如语言支持、计算资源、是否需要定制等,这样用户能根据自身情况做决策。同时,注意技术发展快,建议用户关注最新动态。</think>**语音识别大模型技术全景解析** --- ### **核心模型分类与代表** 1. **端到端通用语音识别模型** - **Whisper(OpenAI)** - 参数量:1.5B(最大版本) - 支持99种语言互转 - 特点:抗噪能力强,支持时间戳标注 - **USM(Google Universal Speech Model)** - 参数量:2B+ - 覆盖100+语言,支持低资源语种 - 应用:YouTube自动字幕生成 2. **自监督预训练模型** - **wav2vec系列(Meta)** - wav2vec 2.0:通过对比学习提取语音特征 - wav2vec 3.0:引入文本监督信号,词错率降低20% - **HuBERT(Facebook)** - 基于隐单元预测的预训练框架 - 在LibriSpeech测试集达1.9% WER 3. **中文专用模型** - **Paraformer(达摩院)** - 非自回归架构,推理速度提升10倍 - 在AISHELL-1测试集达4.8% CER - **WeNet(出门问问)** - 支持流式/非流式混合解码 - 工业级开源解决方案 --- ### **关键技术突破方向** 1. **多模态融合** - **SpeechT5(微软)**:统一语音/文本表示空间 - **AudioPaLM(Google)**:融合语音与LLM的跨模态模型 2. **参数高效微调** - LoRA适配器技术:用1%参数量实现领域适配 - Prompt-tuning:通过提示词控制方言识别 3. **边缘计算优化** - **RNN-T Lite**:模型压缩至50MB以下 - 量化感知训练:8bit量化精度损失<0.5% --- ### **典型应用场景对比** | 场景 | 推荐模型 | 关键需求 | |--------------------|---------------------|-------------------------| | 会议实时转录 | Whisper + VAD | 低延迟、多说话人分离 | | 客服质检 | Wav2vec 3.0 | 高准确率、情感分析联动 | | 车载语音交互 | RNN-T + 降噪模块 | 抗噪性、本地化部署 | | 方言保护 | HuBERT + 迁移学习 | 小样本学习能力 | | 视频字幕生成 | USM | 多语言支持、时间轴对齐 | --- ### **行业最新进展(2024)** 1. **上下文感知识别** - 结合LLM实现对话场景理解(如GPT-4与Whisper集成) 2. **零样本语音克隆** - VALL-E(微软):3秒样本实现语音复刻 3. **脑电波转语音** - Neuralynx项目:准确率突破60% --- ### **选择建议** 1. **学术研究**:优先开源模型(Whisper/HuBERT) 2. **商业部署**:考虑阿里云/腾讯云API服务 3. **隐私敏感场景**:选择可本地化部署的WeNet架构 **注**:语音识别大模型正朝着多语言统一建模、能耗效率提升、隐私保护增强三大方向快速发展,建议持续关注ICASSP、Interspeech等顶会最新成果。
评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值