行人重识别(deep-person-reid)环境搭建及模型训练,模型测试、特征显示

本文介绍了行人重识别(ReID)的基本概念及其挑战,并详细阐述了如何搭建ReID的深度学习环境,包括创建虚拟环境、安装配置软件、训练模型和测试。此外,还探讨了Market-1501数据集的特性。
摘要由CSDN通过智能技术生成

一、什么是行人重识别


    行人重识别(Person Re-identification也称行人再识别,简称为ReID,是利用计算机视觉技术判断图像或者视频序列中是否存在特定行人的技术;或者说,行人重识别是指在已有的可能来源与非重叠摄像机视域的视频序列中识别出目标行人。广泛被认为是一个图像检索的子问题。给定一个监控行人图像,检索跨设备下的该行人图像。在监控视频中,由于相机分辨率和拍摄角度的缘故,通常无法得到质量非常高的人脸图片。当人脸识别失效的情况下,ReID就成为了一个非常重要的替代品技术。ReID有一个非常重要的特性就是跨摄像头,所以学术论文里评价性能的时候,是要检索出不同摄像头下的相同行人图片。

       行人重识别的研究面临着诸如图像分辨率低、视角变化、姿态变化、光线变化以及遮挡等带来的诸多挑战。比如,1)监控视频的画面一般比较模糊,分辨率也比较低,如图4(a)所示,所以利用人脸识别等方式无法进行重识别的工作,只能利用头部之外的人体外观信息进行识别,而不同行人的体型和衣着服饰有可能相同,这为行人重识别的准确度带来了极大的挑战;此外实际视频监控下的场景非常复杂,周边杂物较多,场景复杂,画面很容易出现遮挡等情况,如图4(b), 这种时候靠步态等特征就很难进行重识别。行人重识别的图像往往采自于不同的摄像机,由于拍摄场景、摄像参数不同,行人重识别工作一般存在光照变化及视角变化等问题,如图4(c)、(d)所示,这导致同一个行人在不同摄像机下存在较大的差异,不同行人的外貌特征可能比同一个人的外貌特征更相似;进行重识别的行人图像可能拍摄于不同的时间,行人姿态、衣着会有不同程度的改变。此外在不同的光照条件下,行人的外观特征也会有很大的差异,如图4(e)。以上情况都给行人重识别的研究带来了巨大的挑战,因此目前的研究距离实际应用层面还有很大的距离。

     
   

二、环境搭建

参考博文的地址:

行人重识别Deep person reid源码测试(Torchreid)(一)_Ysn0719的博客-CSDN博客_torchreid

代码下载的地址:

GitHub - KaiyangZhou/()): Torchreid: Deep learning person re-identification in PyTorch.

 #**如果网速不错可以直接使用下面这行命令下载源码**
 git clone https://github.com/KaiyangZhou/deep-person-reid.git 

论文的地址:

https://arxiv.org/abs/1910.10093

下载训练好的模型:

Model Zoo — torchreid 1.4.0 documentation

数据集下载:

Market-1501

工程的使用方法的官方指导网址为:

How-to — torchreid 1.4.0 documentation

2.1创建虚拟环境并安装配置软件

git clone GitHub - KaiyangZhou/deep-person-reid: Torchreid: Deep learning person re-identification in PyTorch.

# 然后重新创建一个python版本为3.7的虚拟环境,命名为torchreid

conda create --name torchreid python=3.7

#激活环境

conda activate torchreid

#找到你所下载的源码文件夹

cd deep-person-reid-master/

# 安装环境依赖,这个前提是保证你已经找到正确的源码路径以及各包版本正确

pip install -r requirements.txt

#安装pytorch

conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch

2.2 怎么运行

当将上面的依赖环境都安装

deep-person-reid是一个用于行人重识别的开源库,它基于PyTorch深度学习框架实现。在使用deep-person-reid进行行人重识别之前,需要进行以下步骤: 1.安装deep-person-reid库 ``` pip install deep-person-reid ``` 2.准备数据集 deep-person-reid支持Market1501、DukeMTMC-reID、CUHK03等多个数据集。你需要先准备好数据集并按照要求的文件夹结构进行组织。 3.配置文件 在deep-person-reid中,模型的配置信息是通过yaml文件进行配置的。你需要创建一个yaml文件,指定数据集路径、模型类型、训练参数等信息。以下是一个示例配置文件: ``` data: sources: ['market1501'] targets: ['market1501'] height: 256 width: 128 combineall: False transforms: ['random_flip', 'color_jitter'] model: name: resnet50 pretrained: True num_classes: 751 loss: name: triplet margin: 0.3 weight_t: 1 weight_x: 1 weight_reg: 0.0005 optimizer: name: adam lr: 0.0003 weight_decay: 5e-04 lr_scheduler: name: step step_size: 40 gamma: 0.1 train: start_epoch: 0 max_epoch: 60 batch_size: 32 workers: 4 print_freq: 10 test: batch_size: 100 workers: 4 ``` 在这个示例配置文件中,我们指定了使用Market1501数据集,使用resnet50模型,使用triplet loss进行训练,使用adam优化器进行优化等等。 4.训练模型 使用deep-person-reid训练模型非常简单,只需要执行以下命令即可: ``` python train.py --config-file /path/to/config.yml ``` 其中,`/path/to/config.yml`指定了你的配置文件路径。 5.测试模型训练完成后,你可以使用以下命令测试模型: ``` python test.py --config-file /path/to/config.yml ``` 这个命令会输出模型测试集上的准确率等指标。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值