AI产品经理的困境与机会

AI产品团队一直都会面临一个两难境地:一难是有太多项目要支持;二难是缺落地资源沉淀产品价值;最难的地方是两难要兼顾进行。

我们先说说第一难。基本上几乎所有大厂给AI团队的定位就是,向全公司输送AI能力,支撑所有的AI能力诉求,而对AI产品经理的定位就是,做好业务与AI团队的「中间人」。这样就避免不了所有业务团队立项都要拉上你一起,就算不是立项形式的也会不停给你提诉求…如此下来,AI团队的产品经理们变成了接需求的机器,甚至是被迫无脑接需求。没办法,AI团队的产品经理人力有限,需求实在是多到不计其数,看上去,也几乎没有太多的时间容一个产品经理去充分思考,挖掘业务价值。

再说第二难。AI团队自存在以来,算法是团队的核心资源,只有比例非常小的工程落地技术资源,甚至,在最初期都没有工程只有算法们。最初创立AI团队的初衷是算法创新模式,后来随着团队演进发现需要工程落地的资源将AI能力落地,AI团队也养成了一种「惯性」——“拿着锤子找钉子”的惯性,即我有什么给你什么。而最初产品团队的存在也只是为了充当项目经理的角色,并不需要具有产品核心需要的能力:发现用户问题-提出方案-解决问题。随着团队的进一步演进以及AI行业的发展,我们越来越需要有人来明确AI产品的业务/行业价值,而不仅仅是能力支撑,结束。而是需要有人站在AI专业视角并且要有深入业务的sense,通过AI连接场景,从而产生价值。那么问题来了,一方面需要有人做业务的探索快速落地产生价值,一方面AI团队又非常缺真正落地的技术资源。因为我们有太多的业务需要支撑,很难腾挪精力出来做看上去额外的事情。

久而久之,AI产品经理的存在感非常低,AI团队就等于技术支持团队。对于AI产品经理来说阻力很大,挑战更大。

这事儿无解了吗?我们反过来看,这也正是一个提升AI产品经理综合素质的极佳环境。正因为要支持项目能帮助AI产品经理们看清业务(进入业务场景),才能有机会从业务中看到有价值的落地产品亮点,才能有机会积累这些产品亮点从而碰撞出新的有长远价值的智能产品,这是一个正循环。这一切考验我们的是,如何自己或者带着团队很好地去balance资源与精力,才能形成这样的正循环,需要解决的问题还有很多。这样的复杂环境,非常锻炼个人能力(无论你是初阶还是高阶还是团队leader),我们需要「勇气」去balance两难,需要「魄力」去决策中长期priority的事情。

我们要记住,产品经理的核心使命是给用户解决问题,首先一定是要知道问题是什么,而不是我们有什么。

如何学习大模型 AGI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

-END-


👉AGI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉AGI大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉AGI大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

<think>好的,我现在要回答用户的问题,即普通产品经理AI产品经理有什么区别。首先,我需要明确这两个职位的定义和职责,然后逐步分析它们的区别。 首先,普通产品经理的主要职责是什么?他们通常负责产品的整个生命周期,从市场调研、需求分析、产品设计、开发跟进到上线后的迭代优化。他们需要协调各个部门,确保产品按时交付并满足用户需求。关键技能包括需求分析、项目管理、用户体验设计、沟通协调等。 接下来是AI产品经理。虽然他们也有产品经理的通用职责,但由于涉及人工智能技术,肯定有特别之处。首先,AI产品经理需要理解机器学习、深度学习等技术的原理和应用场景。他们可能需要处理数据收集、模型训练、算法选择等问题。此外,AI产品的开发流程可能普通产品不同,比如需要数据科学家和工程师的紧密合作,处理数据质量、模型性能等问题。 然后是两者的主要区别。我需要从技术背景、工作流程、核心关注点、风险挑战以及职业门槛这几个方面来比较。例如,技术背景方面,AI产品经理需要懂基础的AI知识,而普通产品经理可能不需要。工作流程方面,AI产品可能更注重数据准备和模型迭代。核心关注点的话,普通产品经理关注功能和用户体验,而AI产品经理可能更关注数据质量和模型效果。 另外,还要考虑风险挑战的不同。比如,AI产品可能存在数据偏见、模型可解释性等问题,而普通产品可能更多是功能实现和用户反馈的处理。职业门槛方面,AI产品经理可能需要更多的技术背景,比如统计学、机器学习的基础知识,而普通产品经理可能更注重行业经验和用户洞察。 然后,我需要验证这些区别是否准确。比如,是否有遗漏的重要点?例如,AI产品经理是否需要处理伦理问题?这可能也是一个关键点,比如隐私保护和算法公平性。另外,在评估指标上,普通产品可能关注用户活跃度、留存率,而AI产品可能关注模型准确率、召回率等。 还有,产品迭代的方式可能不同。普通产品通过A/B测试等功能迭代,而AI产品可能需要持续优化模型和数据。同时,AI产品的开发周期可能更长,因为涉及数据收集和模型训练,而普通产品可能更快上线基础功能。 最后,需要总结这些区别,以清晰的结构呈现给用户,确保他们能理解两者的不同,并根据自身情况选择职业路径。</think>普通产品经理AI产品经理的核心差异可归纳为以下五个维度: $$技术背景 \neq 应用场景$$ 1. **技术知识结构差异** - 普通PM:掌握用户研究、交互设计、市场分析等传统技能,技术理解聚焦在基础架构层面(如API对接、前后端协作) - AI PM:需具备机器学习基础概念(监督/非监督学习、特征工程等),理解模型评估指标(准确率、F1值、AUC-ROC曲线),掌握常见算法适用场景(如CNN处理图像,RNN处理序列数据) 2. **产品开发流程差异** $$数据闭环 = 模型迭代 \times 反馈机制$$ - AI产品需构建「数据采集→清洗→标注→训练→部署→效果监控」的完整闭环 - 典型迭代周期包含模型版本管理(如A/B测试不同模型分支),需设计数据回流机制持续优化 3. **核心能力差异矩阵** | 维度 | 普通PM | AI PM | |---------------|-------------------------|---------------------------------| | 需求分析 | 用户故事地图 | 技术可行性验证(如标注成本评估)| | 风险管理 | 功能延期风险 | 模型偏见/数据泄露风险 | | 评估指标 | DAU/留存率 | 模型准确率/推理延迟 | | 团队协作 | 前后端开发 | 数据科学家+算法工程师 | 4. **特殊挑战领域** - **冷启动问题**:需设计初始数据获取策略(如基于规则系统过渡) - **可解释性困境**:平衡模型效果业务可解释需求(如金融风控场景) - **计算资源约束**:考虑模型压缩(如知识蒸馏)、边缘部署等优化方案 5. **职业发展路径** - 普通PM进阶依赖垂直行业深耕(如电商/社交领域专家) - AI PM需持续跟踪技术演进(如transformer架构发展),同时培养「技术→商业」的转化能力 典型案例对比: - 普通PM设计音乐APP:关注播放列表管理、社交功能设计 - AI PM设计智能推荐系统:需处理协同过滤NLP的融合,设计Embedding更新策略 建议转型路径:普通PM可先从「AI功能模块」(如智能客服子系统)入手,逐步积累特征工程、模型监控等实战经验,再过渡到完整AI产品设计。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值