AI 正快速融入日常生活,影响工作、学习和娱乐等多方面。本书面向 IT 从业者和学生,旨在通俗易懂地讲解 AI 基础知识,包括机器学习、深度学习和神经网络等原理,并分享大语言模型(LLM)等 AIGC 应用。
报告首先介绍了 AI 的定义,将其视为基于数学和统计学的工程实践,通过从数据中挖掘规律实现预测。AI 的训练过程涉及数据收集、模型选择、损失函数定义和参数优化。以房价预测为例,通过线性回归模型,利用梯度下降算法最小化损失函数,从而训练出预测模型。进一步,书中探讨了深度学习和神经网络,特别是卷积神经网络(CNN)在图像处理中的应用。CNN 通过卷积层、激活函数、池化层和全连接层,有效提取图像特征,实现分类和识别任务。
经典网络如 LeNet 在手写数字识别中表现出色,而现代网络如 AlexNet 则在更复杂的图像识别任务中取得突破。在 AIGC 领域,LLM 如 ChatGPT 引发了智能问答、文本生成等应用的热潮。LLM 存在“知识茧房”问题,即其知识局限于训练数据,对新信息或私域知识理解不足。为解决此问题,可通过构建知识库并结合 LLM,利用向量检索技术实现精准问答。报告还介绍了 Langchain 等开源框架,帮助用户快速搭建智能问答系统。
那么,如何系统的去学习大模型LLM?
作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。
所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。
由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
👉大模型学习指南+路线汇总👈
我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
👉①.基础篇👈
基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
👉②.进阶篇👈
接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
👉③.实战篇👈
实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
👉④.福利篇👈
最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!