国内外主流AI大模型案例汇总

一、国外主流AI大模型

  • GPT系列(OpenAI)

GPT-3:一个强大的语言生成模型,具有1750亿个参数,能够生成高质量的文本,支持多种自然语言处理任务。

GPT-4:基于更先进的架构,进一步提高了理解和生成自然语言的能力。

  • BERT(Google)

BERT(Bidirectional Encoder Representations from Transformers):一种用于自然语言理解的模型,能够处理上下文信息,广泛应用于问答、情感分析等任务。

  • T5(Google)

T5(Text-to-Text Transfer Transformer):将所有文本任务统一为文本到文本的格式,具有强大的多任务学习能力。

  • Turing-NLG(Microsoft)

一个大型的自然语言生成模型,具有170亿个参数,专注于生成和理解自然语言。

  • DALL-E(OpenAI)

一个生成图像的模型,能够根据文本描述生成高质量的图像。

  • CLIP(OpenAI)

结合文本和图像的理解,能够通过自然语言描述来识别和生成图像。

  • Stable Diffusion

一个用于生成图像的模型,广泛应用于艺术创作和图像生成任务。

二、国内主流AI大模型

  • ERNIE(百度)

ERNIE(Enhanced Representation through kNowledge Integration):一种基于知识增强的语言模型,能够更好地理解和生成自然语言。

  • Pangu-Alpha(华为)

一个大规模的语言模型,具有多种应用能力,涵盖自然语言处理和生成任务。

  • M6(阿里巴巴)

M6:一个多模态大模型,支持文本、图像和其他数据类型的处理,具有强大的生成和理解能力。

  • GLM(清华大学)

GLM(General Language Model):一个通用的语言模型,能够处理多种自然语言任务,具有良好的性能。

  • ChatGLM(清华大学)

一个针对对话生成优化的模型,旨在提供更自然的对话体验。

  • MindSpore(华为)

结合了多种深度学习技术的框架,支持大规模模型的训练和部署。

总结

AI大模型就像一个智慧大载体,承载着人类最前沿的科技。同样,科技巨头们也纷纷研发自家的AI大模型,以此占据这个科技时代的新赛道。另外,包括一些大型非科技类企业也有在开创和研发行业领域的AI大模型。总之,无论国内国外,AI大模型出现百家争鸣的现象,这也为人工智能的发展创造出了一个多姿多彩,百花齐放的良好生态。


最后分享

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享!

在这里插入图片描述

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

5. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

在这里插入图片描述

### 使用GPU加速大模型训练与推理的实战案例 #### 案例背景 为了更高效地训练和推理大规模深度学习模型,合理利用硬件加速是不可或缺的一环。图形处理单元(GPU)和张量处理单元(TPU)等专用硬件被广泛应用于深度学习任务,能够显著提升计算速度[^1]。 #### 解决方案概述 针对大型神经网络如GPT-3,在单个GPU上难以完成整个模型的加载和训练,因为其所需的显存远超现有设备的能力。例如,175B参数的GPT-3模型需要大约700GB的存储空间来保存权重,这远远超过了当前主流GPU的最大容量80GB显存[^3]。因此,采用分布式训练策略成为必然选择。 #### 技术实现细节 ##### 数据并行化 数据并行是一种简单有效的扩展方式,它将输入的数据集划分为多个子集,并分配给不同的工作节点进行独立运算后再汇总结果。这种方法可以充分利用集群中的多台机器以及每台机器上的多个GPU来进行快速迭代更新。 ```python import torch.nn as nn from torch.utils.data.distributed import DistributedSampler from torchvision.datasets import CIFAR10 from torch.utils.data import DataLoader, random_split dataset = CIFAR10(root='./data', train=True, download=True) train_size = int(0.9 * len(dataset)) val_size = len(dataset) - train_size train_dataset, val_dataset = random_split(dataset, [train_size, val_size]) sampler = DistributedSampler(train_dataset) dataloader = DataLoader( dataset=train_dataset, batch_size=64, sampler=sampler ) ``` ##### 模型并行化 当单一GPU无法容纳完整的模型结构时,则需考虑拆分模型的不同部分到不同设备上去执行前向传播与反向传播操作。这种做法虽然复杂度较高但也非常必要,特别是对于那些拥有极深层数或巨大宽度的大规模预训练语言模型而言。 ```python class ModelParallelResNet50(nn.Module): def __init__(self): super().__init__() self.dev0 = 'cuda:0' self.dev1 = 'cuda:1' # 将一部分层放在第一个gpu上... self.prep_layer = nn.Sequential(...).to(self.dev0) ... # ...另一些放到第二个gpu上 self.fc = nn.Linear(in_features=..., out_features=num_classes).to(self.dev1) def forward(self, x): x = self.prep_layer(x.to(self.dev0)) # 输入先传入dev0 # 中间特征图传输至下一个gpu继续处理 x = x.to(self.dev1) output = self.fc(x.view(-1,...)) return output ``` ##### 训练过程优化技巧 除了上述两种主要方法外还有一些辅助性的措施可以帮助进一步提高效率: - **混合精度训练**:使用FP16代替传统的FP32浮点数表示形式可以在不损失太多准确性的情况下加快收敛速率并且节省内存占用。 - **梯度累积**:如果批次大小受限于可用RAM数量不足以获得良好性能的话可以通过累加多次小批量样本对应的梯度再统一做一次参数调整从而模拟较大batch size的效果而不增加额外开销。 这些技术共同作用使得即使面对极其庞大的AI项目也能顺利完成开发部署流程的同时保持较高的生产力水平[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值