0基础也能听懂:从预训练到SFT,对话模型技术栈深度拆解!

当你和deepseek对话的时候,你有没有想过,这家伙是怎么从一堆代码变成“会说话”的?这个过程听起来可能有点复杂,但其实可以用很直白的方式讲清楚。简单来说,从基座模型到对话模型的转变需要经过四个步骤:预训练基础模型、任务适应微调(SFT)、人类反馈强化学习(RLHF),以及部署和持续优化。下面,我们就一步步拆解这个过程,看看它是怎么实现的。

img

一、第一步:GPT 是怎样的“百搭底座”?

打个比方:如果你拿到了一盒万能积木(基座模型),里面的形状、颜色、接口都非常齐全,可以拼出街道、房屋、汽车……它的核心能力就是根据已有积木(文本上下文),准确预测下一个该放置的积木(下一个词)。这就是 GPT 这类语言模型的起点,一个能灵活应对各种语言任务的“百搭底座”。

  • 预训练目标: 在海量(数千亿级)无标签文本上,通过“预测下一个词”或“恢复被掩盖的词”的自监督学习,让模型从字词级别一直学到句法、篇章乃至隐含的语义逻辑。这种训练方式让模型像个超级聪明的“语言观察家”,能在没有任何明确指令的情况下自己摸索出语言的规律。

  • 成果特点: 经过这一步,模型掌握了广泛的语言规律和世界常识,比如知道“太阳”跟“升起”常连在一起,或者“吃饭”后面可能接“筷子”。但它还像个书呆子,缺乏特定场景下的“说话技巧”和“应对策略”,比如面对“你今天过得怎么样”这种问题,它可能会机械地回答一堆事实,而不懂得聊出感情。

二、第二步:让模型“上岗”——监督微调(SFT)

有了万能积木,还需要教它组装某种特定的玩具。监督微调(Supervised Fine-Tuning,简称 SFT)就是这个过程:让模型从“语言通才”变成“对话专才”。

  • 收集“人类范本”: 这一步的关键是准备大量高质量对话集,每条样本都包括“对话历史”+“标准回复”。比如,“用户问:明天天气如何?”“标准答:明天晴天,温度20度。”这些数据就像一本对话教科书,教模型如何应对真实场景。
  • 目标转向对话生成: 把这些对话数据喂给预训练模型,让它学着在特定上下文下,生成符合人类习惯的回答。模型开始明白,聊天不是随便堆砌词语,而是要根据对方的提问给出有针对性的回应。
  • 损失函数: 训练时依然用常见的交叉熵,最小化模型输出和真实回复之间的差距。简单来说,就是让模型的回答尽量贴近人类的“标准答案”。
  • 效果: 经过 SFT,模型已经能参与简单对话,掌握基本礼貌用语和常见话题。比如问它“今天心情如何”,它可能会说“挺好的,你呢?”但这时的模型还像个新手,难免出现“跑题”“答非所问”或“逻辑不够严密”的小瑕疵,比如突然聊到天气去了。

三、第三步:磨光“棱角”——RLHF(人类反馈强化)

仅靠 SFT 训练出的模型,像是一位初出茅庐的演讲者,能说会道但不够圆滑;要让它真正动听、贴心,还得请资深评委现场打分。RLHF(Reinforcement Learning from Human Feedback)正是这个打分+优化的过程,让模型从“能聊”变成“会聊”。

  • 打分收集: 拿 SFT 模型生成的多种回复版本,请人类评审按照“相关性、流畅度、逻辑性”等维度打分。比如对“你今天过得怎么样”,模型可能给出三个回答:A.“还行吧。” B.“挺好的,你呢?有什么特别的事吗?” C.“今天天气很好。”评审会觉得 B 更贴心,给高分。

  • 奖励模型: 用这些打分数据训练一个“回归式”模型,让它学会预测人类打分。这个模型就像个“对话裁判”,能判断哪种回答更讨人喜欢。

  • 策略优化: 在对话生成时,模型会参考奖励模型对未来奖励的预估,用强化学习(如策略梯度算法)鼓励“高分”回答。换句话说,它会主动调整自己,尽量说出更自然、更贴合用户期待的话。

  • 循环迭代: 不断收集新打分,更新奖励模型和对话模型,直到整体质量达到预期。这个过程就像反复排练,模型越来越懂得如何“察言观色”。

  • 收获: 对话更自然、更切题,能主动保持连贯,多轮交互中也更少“跑偏”。比如问它“你觉得我该怎么办”,它不会冷冰冰地甩个方案,而是可能说“看你情况,要不试试这个,怎么样?”同时,RLHF 还能有效抑制不恰当或带偏见的回答输出,让模型更靠谱。

四、第四步:上线与长跑——部署与持续优化

当经过 SFT + RLHF 打磨后的聊天模型正式上线,它就成了一名“专业客服”或“智能小秘书”,随时为用户服务。但真正的挑战并不止于此,保持优秀表现是个长期任务。

  • 实时监控: 上线后要收集用户反馈与会话日志,计算满意度指标,及时发现“冷启动”盲区或新场景下的短板。比如有人问了个新流行梗,模型却一脸懵,这就需要赶紧补课。

  • 定期补充数据: 随着社会热点、用语习惯不断变化,定期收集新对话素材,保证模型“与时俱进”。比如“爷青回”这种网络用语火了,模型得学会用它来拉近距离。

  • 安全与伦理: 在各环节融入内容审核、偏见检测与可解释性分析,让系统既够“聪明”也够“靠谱”。比如避免输出敏感内容,或者解释为什么给出了某个回答。

  • 多模态与扩展: 未来还可结合图像、声音等信息,让对话更加立体多元。想象一下,你发张照片问“这个地方怎么样”,它能看图说话,多酷!

五、总结

怎么样,看完这一路拆解,是不是觉得对话模型也没那么高深莫测了?从预训练到SFT,我们把一堆乱码变成会聊天的AI的过程掰开了揉碎了讲清楚。即便你是零基础,现在也能拍胸脯说自己懂了点门道。总的来说,从一个普通的语言模型(像GPT)变成一个对话智能(像ChatGPT),需要这四个步骤:

  • 预训练:让模型学会语言的基本规矩,成为“百搭底座”。
  • SFT:教它聊天的套路,适应具体任务。
  • RLHF:帮它变成聊天高手,懂得如何讨人喜欢。
  • 持续优化:让它一直保持最佳状态,跟上时代步伐。

每一步都像搭积木,缺一不可。通过这个过程,模型从一个只会写文章的“通才”,变成了一个能陪你聊天的“朋友”。

那么,如何系统的去学习大模型LLM?

作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
在这里插入图片描述

👉大模型学习指南+路线汇总👈

我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
在这里插入图片描述
在这里插入图片描述

👉①.基础篇👈

基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
在这里插入图片描述

👉②.进阶篇👈

接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
在这里插入图片描述

👉③.实战篇👈

实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
在这里插入图片描述

👉④.福利篇👈

最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值