Keras是一种高度模块化,使用简单上手快,合适深度学习初学者使用的深度学习框架。Keras由纯Python编写而成并以Tensorflow、Theano以及CNTK为后端。Keras为支持快速实验而生,能够把你的idea迅速转换为结果。
sequential模型,就是多个网络层的线性堆叠
建立模型有两种方式:一是向layer添加list的方式,二是通过.add()方式一层层添加(一个add为一层),具体可见如下代码:
#引入Sequential,Dense,Activation
from keras.models import Sequential
from keras.layers import Dense, Activation
#向layer添加list方式
model = Sequential([Dense(input_dim=784,output dim=500),Activation('relu'),Dense(10),Activation('softmax'),])
#通过.add()方式
model = Sequential()
model.add(Dense(input_dim=784,output dim=500))
model.add(Activation('relu'))
model.add(Dense(output dim=500))
model.add(Activation('softmax'))
Dense表示使用 fully connected layers(全连接层)
Activation表
sequential模型,就是多个网络层的线性堆叠
建立模型有两种方式:一是向layer添加list的方式,二是通过.add()方式一层层添加(一个add为一层),具体可见如下代码:
#引入Sequential,Dense,Activation
from keras.models import Sequential
from keras.layers import Dense, Activation
#向layer添加list方式
model = Sequential([Dense(input_dim=784,output dim=500),Activation('relu'),Dense(10),Activation('softmax'),])
#通过.add()方式
model = Sequential()
model.add(Dense(input_dim=784,output dim=500))
model.add(Activation('relu'))
model.add(Dense(output dim=500))
model.add(Activation('softmax'))
Dense表示使用 fully connected layers(全连接层)
Activation表