11.11学习笔记之keras的sequential模型

本文介绍了Keras深度学习框架中的Sequential模型,包括通过list方式和.add()方法建立模型,详细解释了Dense层和Activation函数的用法。此外,还探讨了模型编译的配置,如optimizer、loss和metrics的选择。最后,讨论了训练模型的fit函数,以及batch_size和epoch对训练过程的影响。
摘要由CSDN通过智能技术生成
Keras是一种高度模块化,使用简单上手快,合适深度学习初学者使用的深度学习框架。Keras由纯Python编写而成并以Tensorflow、Theano以及CNTK为后端。Keras为支持快速实验而生,能够把你的idea迅速转换为结果。


sequential模型,就是多个网络层的线性堆叠
建立模型有两种方式:一是向layer添加list的方式,二是通过.add()方式一层层添加(一个add为一层),具体可见如下代码:


#引入Sequential,Dense,Activation
from keras.models import Sequential
from keras.layers import Dense, Activation
#向layer添加list方式
model = Sequential([Dense(input_dim=784,output dim=500),Activation('relu'),Dense(10),Activation('softmax'),])


#通过.add()方式
model = Sequential()
model.add(Dense(input_dim=784,output dim=500))
model.add(Activation('relu'))
model.add(Dense(output dim=500))
model.add(Activation('softmax'))
Dense表示使用 fully connected layers(全连接层)
Activation表
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值