keras 神经网络模型 Sequential模型

本文介绍了Keras中的Sequential模型,这是一种线性堆叠多个网络层的方法。主要内容包括通过.add()和添加list两种方式构建模型,以及Dense层的详细参数解释,如units、activation、use_bias等。Dense层作为全连接层,常用于神经网络,并提供了多种激活函数选项,如softmax、relu、sigmoid等。
摘要由CSDN通过智能技术生成

Sequential模型,就是多个网络层的线性堆叠。它建立模型有两中方式,一种是向layer中添加list,一种是通.add()的方式一层层的天添加。

from keras.models import Sequential
from keras.layers.core import Dense,Activation
#list方式
model = Sequential([Dense(32,input_dim=784),Activation('relu'),Dense(10),Activation('softmax')])
#.add的方式
model = Sequential()
model.add(Dense(input_dim=3,output_dim=10))
model.add(Activation('relu'))

Dense层,是常用的全连接层,

Dense(units, activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None)

各参数的含义:

  • units:大于0的整数,代表该层的输出维度。

  • activation:激活函数,为预定义的激活函数名(参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值