牛顿迭代法求解平方根

原创 2015年05月16日 10:30:39

一个实例

//java实现的sqrt类和方法
public class sqrt {
    public static double sqrt(double n)
    {
        if (n<0) return Double.NaN;
        double err = 1e-15;
        double t = n;
        while (Math.abs(t - n/t) > err*t)
            t = (n/t + t)/2;
        return t;
    }
    public static void main(String[] args)
    {
        sqrt a  = new sqrt();
        System.out.println(a.sqrt(2));
    }
}
//2的平方根的求解结果
>>1.414213562373095

迭代简介

迭代,是一种数值方法,具体指从一个初始值,一步步地通过迭代过程,逐步逼近真实值的方法。
与之相对的是直接法,也就是通过构建解析解,一步求出问题的方法。

通常情况下,我们总是喜欢一步得到问题的结果,因此直接法总是优先考虑的。
但是,当遇到复杂的问题时,特别在未知量很多,方程非线性时,无法得到直接解法(例如五次方程并没有解析解)。
这时候,我们需要使用迭代算法,一步步逼近,得到问题的答案。

迭代算法,通常需要考虑如下问题:
- 确定迭代变量
- 确定迭代关系式
- 确定迭代终止条件

牛顿迭代法

牛顿迭代法简介

牛顿迭代法,求解如下问题的根x

f(x)=0

求解方法如下:

xn+1=xnf(xn)f(xn)

方法中,迭代变量是根x,迭代关系式如上,迭代终止条件是|f(xn)0|<error

牛顿迭代法需要满足的条件是:
f(x)是连续的,并且待求的零点x是孤立的。
那么,在零点x周围存在一个区域,只要初始值x0位于这个邻域内,那么牛顿法必然收敛。
并且,如果f(x)不为0,那么牛顿法将具有平方收敛的特性,也就是,每迭代一次,其结果的有效倍数将增加一倍。

简单推导

这里写图片描述


f(xn)=dydx=f(xn)xnxn+1


xn+1=xnf(xn)f(xn)

对于平方根问题,假设f(x)=x2n,代入上式,有

xn+1=12(xn+nxn)

其图像含义是:通过对接近零点的领域点做切线,不断逼近零点,最终十分靠近零点。

泰勒公式推导

上面的式子,同样,可以用泰勒公式推导出来。

f(xn+ϵ)=f(xn)+f(xn)ϵ+12f(x)ϵ2+...

只取等号右边的前两项,有
ϵ=f(xn+ϵ)f(xn)f(xn)

两边同时加上xn,有
xn+1=xn+ϵ=xn+f(xn+ϵ)f(xn)f(xn)=xn+f(xn+1)f(xn)f(xn)

最终,f(xn+1=0),假设f(x)=x2n,上式同样可以化成
xn+1=12(xn+nxn)

本质上,牛顿迭代法就是利用了泰勒公式的前两项和,是泰勒公式的简化。

延伸与应用

同样的,牛顿迭代法同样可以求n次方根,对于f(x)=xmn

xn+1=xnxnm(1axnm)

牛顿迭代法求平方根

求平方根可以用二分的思路。二分其实也挺快的,不过还有更快的算法求平方根——牛顿迭代法。 如果我们要求a的平方根,首先令f(x)=x^2-a;那么我们的目的就是求得x使得f(x)=0; 在网上找了一张图...
  • w20810
  • w20810
  • 2015-10-11 10:13:13
  • 3476

二分法和牛顿迭代法求平方根(Python实现)

求一个数的平方根函数sqrt(int num) ,在大多数语言中都提供实现。那么要求一个数的平方根,是怎么实现的呢? 实际上求平方根的算法方法主要有两种:二分法(binary search)和牛顿迭代...
  • ycf74514
  • ycf74514
  • 2015-10-09 10:22:07
  • 4968

利用牛顿迭代法求平方根

求n的平方根,先假设一猜测值X0 = 1,然后根据以下公式求出X1,再将X1代入公式右边,继续求出X2…通过有效次迭代后即可求出n的平方根,Xk+1先让我们来验证下这个巧妙的方法准确性,来算下2的平方...
  • z2008junjie
  • z2008junjie
  • 2010-03-09 17:37:00
  • 18803

牛顿迭代法实现平方根函数

牛顿迭代法实现平方根函数平方根函数Sqrt() 用来求一个数的平方根,如何实现这个函数?有多种方法,这里记录一种比较常用的牛顿迭代法。牛顿迭代法 牛顿迭代法(Newton·s method)又称为...
  • zhaoyunfullmetal
  • zhaoyunfullmetal
  • 2015-10-20 21:15:06
  • 1302

使用牛顿迭代法求平方根

前段时间去面试,被问到“如何在不调用库函数的前提下最快速地求出根号2,结果保留6位有效数字?” 方法一:简单暴力的逼近法 def approach(a): x = 0.0 count ...
  • smart_hj
  • smart_hj
  • 2015-11-16 14:09:30
  • 277

牛顿迭代法(牛顿-拉弗森方法(Newton-Raphson method))

起源[编辑] 牛顿法最初由艾萨克·牛顿在《流数法》(Method of Fluxions,1671年完成,在牛顿死后的1736年公开发表)。约瑟夫·拉弗森也曾于1690年在Analysis ...
  • szlcw1
  • szlcw1
  • 2014-04-22 21:22:41
  • 8431

牛顿迭代法求平方根(c++代码)

闲着无聊随便写一写 #include #include float mSqrt( float number ){     float result = 0x5f37...
  • u013480667
  • u013480667
  • 2015-03-02 23:17:21
  • 3024

牛顿迭代法求数的平方根和立方根

求平方根和立方根,我们一般用牛顿迭代法,下面是对应的公式。 求Y的平方根迭代公式:a(n+1)=(a(n)+Y/a(n))/2,初始化可以令a0 = 1。 求Z的立方根迭代公式:a(n+1)...
  • wwj_ff
  • wwj_ff
  • 2015-07-10 10:43:55
  • 3781

牛顿迭代法实现平方根函数sqrt

转自利用牛顿迭代法自己写平方根函数sqrt  给定一个正数a,不用库函数求其平方根。        设其平方根为x,则有x2=a,即x2-a=0。设函数f(x)= x2-a...
  • wdjhzw
  • wdjhzw
  • 2014-11-06 16:49:57
  • 1397

牛顿法实现开根号

SCIP 1.1.7的一个练习。 牛顿迭代法(Newton's method)又称为牛顿-拉夫逊方法(Newton-Raphson method),它是牛顿在17世纪提出的一种在实数域和复数域上...
  • huaqianmian
  • huaqianmian
  • 2016-04-29 10:06:03
  • 3019
收藏助手
不良信息举报
您举报文章:牛顿迭代法求解平方根
举报原因:
原因补充:

(最多只允许输入30个字)