def call(self, input_tensor):
return input_tensor / tf.math.sqrt(tf.reduce_mean(input_tensor ** 2, axis=-1, keepdims=True) + self.epsilon)
与其他归一化不同,像素归一化没有任何可学习的参数。它仅由简单的算术运算组成,因此计算效率很高。
频谱归一化详解
为了解释频谱归一化,首先需要复习下线性代数的知识,以大致解释什么是频谱范数。
首先温故下矩阵理论中的特征值和特征向量:
A v = λ v Av=\lambda v Av=λv
其中 A A A是一个方阵, v v v是特征向量,而 λ \lambda λ是其特征值。
我们将使用一个简单的示例来理解这些术语。假设 v v v是关于位置 ( x , y ) (x, y) (x,y)的向量,而 A A A是线性变换:
A = ( a b c d ) , v = ( x y ) A=\begin{pmatrix} a & b\\ c & d\\ \end{pmatrix},v=\begin{pmatrix} x \\ y \\ \end{pmatrix} A=(acbd),v=(xy)
如果将 A A A乘以 v v v,我们将获得一个新的位置,其方向改变如下:
A v = ( a b c d ) × ( x y ) = ( a x + b y c x + d y ) Av=\begin{pmatrix} a & b\\ c & d\\ \end{pmatrix}\times \begin{pmatrix} x \\ y \\ \end{pmatrix}=\begin{pmatrix} ax + by\\ cx + dy\\ \end{pmatrix} Av=(acbd)×(xy)=(ax+bycx+dy)
特征向

最低0.47元/天 解锁文章
4092

被折叠的 条评论
为什么被折叠?



