行人属性识别——Multi-attribute Learning for Pedestrian Attribute Recognition in Surveillance Scenarios

本文提出DeepSAR和DeepMAR两个网络解决监控场景下行人属性识别问题。DeepSAR独立识别每个属性,而DeepMAR考虑属性间的关系。实验表明,DeepMAR在处理属性关联和小比例属性识别时表现出优势。未来工作将探索多标签学习任务的新型损失函数,并应用于行人重识别。
摘要由CSDN通过智能技术生成

年份:2015 
会议:3rd IAPR Asian Conference on Pattern Recognition (ACPR)
机构:中国科学院.自动化研究所.模式识别国家重点实验室
网络:DeepSAR DeepMAR
源码(论文没有提供源码,是他人实现的):https://github.com/kyu-sz/DeepMAR_deploy 

该论文是后期被行人属性相关论文引用最多的。当前(2015年)属性识别问题主要针对两个应用场景,自然场景和监控场景。本篇论文针对监控场景。

该论文就行人属性识别领域存在的两个主要问题(手工找特征不能很好的适用视频场景、属性之间的关系被忽略),主要提出了两个网络,DeepSAR和DeepMAR。

DeepSAR:独立识别每个属性。将每一个属性的识别当作二元分类问题,然后一个一个识别每个属性。
DeepMAR:利用属性之间的关系,如长发更有可能是女性,所以头发的长度有利于帮助识别性别属性。将所有属性的识别一次性完成,多标签分类问题。

网络结构:

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值