本文没什么内容。。。
人工智能概述
机器学习与深度学习的关系
机器学习是实现人工智能的一个途径。
深度学习是由机器学习中的一个方法发展而来。
应用场景
大体上分为三个领域:
- 预测领域:量化投资、广告推荐、企业客户分类
- 图像领域:无人驾驶、人脸识别
- 自然语言处理领域:文本分类、情感分析、自动聊天、文本检测
什么是机器学习
定义:从数据中自动分析获得模型,并利用模型对未知数据进行预测。
数据集的构成:特征值 + 目标值
每一行数据可以称为样本。
数据集可以没有目标值。(比如把相似的事物分到一起,做成很多个类别,即聚类)
算法分类
-
监督学习
-
分类问题(离散型数据,例如区分猫和狗、预测天气是晴还是雨)
-
回归问题(连续性数据,例如预测房价、预测气温)
-
-
无监督学习(无目标值)
开发流程
- 获取数据
- 数据处理
- 特征工程
- 算法训练 —— 模型
- 模型评估
学习框架
数学基础:李航 —— 《统计学方法》
机器学习:周志华 —— “ 西瓜书 ”
深度学习:” 花书 ”
如果没浓厚的数学兴趣,不建议一上来就研究数学,建议先用框架,有一个大致认识,再详细研究某个方向,逐渐深入到公式推导。
机器学习框架:SKlearn
深度学习框架:
tensorflow
pytorch