机器学习入门(一)概述

本文没什么内容。。。


人工智能概述

机器学习与深度学习的关系

机器学习是实现人工智能的一个途径。

深度学习是由机器学习中的一个方法发展而来。

image-20220816104334792

应用场景

大体上分为三个领域:

image-20220816105123754
  • 预测领域:量化投资、广告推荐、企业客户分类
  • 图像领域:无人驾驶、人脸识别
  • 自然语言处理领域:文本分类、情感分析、自动聊天、文本检测

什么是机器学习

定义:从数据中自动分析获得模型,并利用模型对未知数据进行预测

image-20220816105810380

数据集的构成:特征值 + 目标值

image-20220816110142693

每一行数据可以称为样本。

数据集可以没有目标值。(比如把相似的事物分到一起,做成很多个类别,即聚类)

算法分类

  • 监督学习

    • 分类问题(离散型数据,例如区分猫和狗、预测天气是晴还是雨)

    • 回归问题(连续性数据,例如预测房价、预测气温)

  • 无监督学习(无目标值)

image-20220816111043431 image-20220816111638533

开发流程

  1. 获取数据
  2. 数据处理
  3. 特征工程
  4. 算法训练 —— 模型
  5. 模型评估

学习框架

数学基础:李航 —— 《统计学方法》

机器学习:周志华 —— “ 西瓜书 ”

深度学习:” 花书 ”

如果没浓厚的数学兴趣,不建议一上来就研究数学,建议先用框架,有一个大致认识,再详细研究某个方向,逐渐深入到公式推导。

机器学习框架:SKlearn

深度学习框架:

  • tensorflow
  • pytorch
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值