线性代数-第25篇:线性代数在有限元分析中的工程应用
有限元分析(Finite Element Analysis, FEA)是工程领域的核心技术,广泛应用于机械、土木、航空航天等领域的结构强度、振动、传热分析。从单元刚度矩阵的构建到整体系统方程的求解,线性代数为有限元分析提供了核心数学框架,支撑复杂工程问题的高效求解。本文将解析线性代数如何贯穿有限元分析的全流程,并结合桥梁结构分析案例展示其工程价值。
一、有限元分析的核心逻辑:从连续体到离散单元
1. 离散化与单元建模
有限元分析将连续的工程结构(如桥梁、机械零件)离散为有限个单元(如梁单元、四面体单元),每个单元的力学行为通过线性代数方程描述。以二维梁单元为例,其位移场可表示为:
u ( x ) =