intel汇编几种跳转的区别

几种跳转指令和对应的机器码

0xE8    CALL    后面的四个字节是地址

0xE9    JMP    后面的四个字节是偏移

0xEB    JMP    后面的二个字节是偏移

0xFF15    CALL    后面的四个字节是存放地址的地址

0xFF25    JMP    后面的四个字节是存放地址的地址
比如想实现循环跳转当前指令,就可以是eb fe,或者e8 fb ff ff ff

0x68    PUSH    后面的四个字节入栈

0x6A    PUSH    后面的一个字节入栈

shellcode跳转回原始OEP方法一

大部分人比较喜欢直接jmp跳转到原始oep,这时候一般都用e9跳转,e9后面的四个字节是一个偏移地址。
计算公式: 偏移地址 = 目的地址 - 跳转基地址(jmp的下一条指令的地址)
也就是 原始OEP - jmp的下一条指令的地址

db    0e9h        ;这是jmp
OEPOffs:
dd    ?        ;这里是4个字节 未初始化


偏移地址 = 原始OEP - (offset OEPOffs + 4)  为什么+4 因为OEPOffs标号向后偏移4个字节 才是jmp的下一条指令地址  也就是跳转基地址

shellcode跳转回原始OEP方法二

有些人用 push oep然后jmp dword ptr [esp]的方法跳回原始oep,这时候shellcode要这样写:

db    68h
OEP:
dd    ?
jmp dword ptr [esp]


68h是 push后面四个字节的意思  dd ? 声明了四个字节,然后通过OEP标号,定位到这个位置,然后把原始OEP写进去就可以了

参考资料https://blog.csdn.net/wzsy/article/details/17163589 

<think>好的,我现在需要帮助用户了解SAM模型在目标检测中的应用方法和实现。首先,我得回忆一下SAM的基本情况。SAM是Meta提出的分割基础模型,擅长零样本分割,但目标检测通常需要定位和分类,而SAM本身并不直接做检测。所以用户的问题应该是如何将SAM应用到目标检测任务中。 接下来,我应该查阅用户提供的引用资料。引用[2]提到使用YOLOv9结合SAM在RF100数据集上实现自定义检测模型,这说明可能是一个两阶段方法,先用YOLO检测,再用SAM分割。引用[3]讨论了微调SAM的方法,比如Conv-LoRA,用于适应特定领域,比如医学图像或遥感,这可能涉及到参数高效的微调策略。引用[4]提到用视觉大模型生成数据集,其中SAM可能用于生成掩码,但存在误识别需要处理。 然后,我需要整理SAM在目标检测中的几种常见方法。首先,结合现有检测器,比如YOLO检测框,再用SAM细化分割,这样能提高检测的精度和边缘处理。其次,直接利用SAM生成候选区域,通过提示生成多个掩码,再通过后处理筛选出目标,可能结合分类网络。另外,微调SAM以适应目标检测任务,如Conv-LoRA方法,增强局部特征,提升在特定领域的表现。 在实现步骤方面,可能需要数据准备,比如用检测数据集,结合SAM生成掩码。模型设计上,可能需要将检测模型和SAM结合,或者微调SAM的编码器。训练过程中,可能需要冻结SAM的部分参数,只训练检测头或适配模块。后处理部分,可能需要NMS或者过滤低质量掩码。 还需要考虑SAM的优势,比如强大的分割能力和零样本泛化,但直接用于检测的不足,比如缺乏分类能力、计算开销大。因此,结合现有检测器或微调是必要的。同时,引用中的案例,如YOLOv9+SAM,展示了实际应用的可能性。 最后,要生成相关问题,帮助用户深入思考,比如SAM与其他检测模型的对比,优化方法,处理小目标或遮挡场景,以及生成检测数据集的潜力。需要确保回答结构清晰,引用正确,比如引用[2]和[3]的具体内容,并且使用正确的中文和LaTeX格式。</think>### SAM模型在目标检测中的应用方法与实现 #### 1. **SAM模型的核心能力** - **分割基础模型**:SAM(Segment Anything Model)通过大规模数据训练,具备零样本泛化的图像分割能力,能够根据提示(如点、框或文本)生成高质量掩码[^3]。 - **局限性**:SAM本身不包含目标分类功能,且直接用于目标检测时可能因缺乏语义信息导致误分割(如引用[4]中的误识别问题)。 #### 2. **SAM与目标检测的结合方法** ##### 方法1:**两阶段检测框架** - **步骤**: 1. **检测器定位目标**:使用YOLO、Faster R-CNN等模型生成候选框(如引用[2]中的YOLOv9)。 2. **SAM细化分割**:将候选框作为提示输入SAM,生成精确掩码。 - **数学表达**:假设检测器输出候选框$B_i = (x_{\text{min}}, y_{\text{min}}, x_{\text{max}}, y_{\text{max}})$,SAM对$B_i$区域分割掩码$M_i$。 - **优势**:结合检测器的分类能力和SAM的分割精度,提升检测细节[^2]。 ##### 方法2:**基于提示的候选区域生成** - **实现**: - 通过密集点或网格提示,让SAM生成大量候选掩码。 - 结合分类网络对掩码区域进行语义标注。 - **公式**:对输入图像$I$,SAM生成掩码集合$\{M_j\}$,分类网络输出概率$P(c|M_j)$,筛选$P(c|M_j) > \theta$的目标。 ##### 方法3:**参数高效微调(如Conv-LoRA)** - **核心思想**:在SAM的ViT编码器中注入卷积参数,增强局部特征提取能力(引用[3])。 - **实现**: - 冻结SAM主干,仅训练轻量级适配模块。 - 损失函数设计:结合检测框回归和分类损失: $$ \mathcal{L} = \lambda_1 \mathcal{L}_{\text{box}} + \lambda_2 \mathcal{L}_{\text{cls}} $$ #### 3. **具体实现步骤(以YOLOv9+SAM为例)** 1. **数据准备**:标注目标检测数据集(如RF100 Construction-Safety-2),包含边界框和类别标签。 2. **模型设计**: - 第一阶段:YOLOv9检测目标并输出粗粒度框。 - 第二阶段:将框输入SAM生成掩码,融合分类结果。 3. **训练策略**: - 冻结SAM编码器,仅训练检测器与分类头。 - 使用负例mask过滤误分割(如引用[4]中的方法)。 #### 4. **典型应用场景** - **高精度检测需求**:如自动驾驶中车辆轮廓分割、医学图像中的器官定位[^3]。 - **小目标检测**:通过SAM的细粒度分割提升小目标召回率。 - **数据生成**:利用SAM生成掩码辅助构建检测数据集(需后处理去除噪声)[^4]。 #### 5. **挑战与优化方向** - **计算效率**:SAM的实时性较差,可通过蒸馏或轻量化改进。 - **语义增强**:引入CLIP等模型提供分类语义(如引用[1]中结合DINO)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值