【pytorch官方文档学习之一】numpy

本系列旨在通过阅读官方pytorch代码熟悉CNN各个框架的实现方式和流程。

【pytorch官方文档学习之一】numpy

本文是对官方文档Tensors——warm-up:numpy的详细注释和个人理解,欢迎交流。

  • 简述
    numpy是一种nd-array数据类型,无法直接作为GPU的输入,须转变成tensor或variable类型。
  • 实例
    以下是利用numpy实现的两层CNN,包括forward和backward。
# -*- coding: utf-8 -*-
import numpy as np

# N is batch size; D_in is input dimension;
# H is hidden dimension; D_out is output dimension.
N, D_in, H, D_out = 64, 1000, 100, 10   # 定义input、output、batch size和hidden layer的维度

# Create random input and output data
x = np.random.randn(N, D_in)  # 以标准正态分布采样的方式生成维度为(N*D_in)的输入数据用来模拟数据集的输入数据。
y = np.random.randn(N, D_out)  # 以标准分布采样的方式生成维度为(N*D_out)的输出数据

# Randomly initialize weights
w1 = np.random.randn(D_in, H)   # 从标准正态分布中随机采样一组weights作为初始化值
w2 = np.random.randn(H, D_out)

learning_rate = 1e-6 # 定义lr
for t in range(500):   
    # Forward pass: compute predicted y   前向运算求出y的预测值
    h = x.dot(w1)                       # 定义hidden layer = x*w1
    h_relu = np.maximum(h, 0)			# 定义relu
    y_pred = h_relu.dot(w2)				# 定义y_pred = h_relu*w2

    # Compute and print loss
    loss = np.square(y_pred - y).sum()  # 定义loss
    print(t, loss)						# 每次运算输出一次loss

    # Backprop to compute gradients of w1 and w2 with respect to loss     利用loss反向传播更新w1和w2
    grad_y_pred = 2.0 * (y_pred - y)	
    grad_w2 = h_relu.T.dot(grad_y_pred)
    grad_h_relu = grad_y_pred.dot(w2.T)
    grad_h = grad_h_relu.copy()
    grad_h[h < 0] = 0
    grad_w1 = x.T.dot(grad_h)

    # Update weights   更新weights
    w1 -= learning_rate * grad_w1
    w2 -= learning_rate * grad_w2

注意定义神经网络的流程及方法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值