集成算法简介
集成算法是一种将多个弱学习器组合成强学习器的机器学习方法。通过结合多个模型的预测结果,集成算法能够提高预测的准确性和稳定性。其中,随机森林是一种常用的集成算法之一。
随机森林理论
随机森林是由多棵决策树组成的集成模型。每棵决策树都是通过对训练数据的随机抽样和特征的随机选择来构建的。在预测时,随机森林中的每棵树都会对输入样本进行预测,最后通过投票或平均的方式得到最终的预测结果。
随机森林的优点包括:
-
随机性:随机森林通过对数据和特征的随机选择,减少了模型的方差,提高了模型的泛化能力。
-
高效性:随机森林可以并行构建多棵树,加速了训练过程。
-
鲁棒性:随机森林对于缺失数据和噪声具有较好的鲁棒性。
sklearn中的随机森林参数详解
在sklearn库中,我们可以使用RandomForestClassifier
和RandomForestRegressor
类来构建随机森林分类器和回归器。下面是一些常用的参数及其解释:
-
n_estimators
:指定森林中树的数量。增加树的数量可以提高模型的性能,但会增加计算开销,默认值为100。 -
criterion
: