Dr_Can自动控制理论学习——根轨迹

本文部分素材来自Dr_Can的B站教程,请支持原作者。DR_CAN的个人空间-DR_CAN个人主页-哔哩哔哩视频 (bilibili.com)

1. 二阶系统标准形式

\ddot{y}(t)+2\zeta\omega_n\dot{y}(t)+{\omega_n}^2y(t)={\omega_n}^2u(t)

 U(s)为常数,可知X(s)

X(S)=\frac{1}{s^2+2\zeta\omega_ns+{\omega_n}^2}

s^2+2\zeta\omega_ns+{\omega_n}^2=0

可知根为

S=\frac{-2\zeta w_{n}\pm\sqrt{4\zeta^{2}w_{n}^{2}-4w_{n}^{2}}}{2}

化简为

S=-\zeta w_{n}\pm w_{n}\sqrt{\zeta^{2}-1}

可知根为

P_1=-\zeta w_{n}+ w_{n}\sqrt{\zeta^{2}-1}P_2=-\zeta w_{n}- w_{n}\sqrt{\zeta^{2}-1}

将上式分解可得

X(s)=\frac{1}{(s-p_{1})(s-p_{2})}=\frac{C_1}{s-p_{1}}+\frac{C_2}{s-p_{2}}

转换为时域形式

X(t)=C_{1}e^{ p_{1}t}+C_{2} e^{p_{2}t}

  • \zeta>1时,P1和P2<0,根位于负实轴上,根越远离0收敛越快,但是最终收敛的速度取决于离0最近的根。

  •  当\zeta=0

P_1= w_{n}iP_2= -w_{n}i

可知

X{(s)}=\frac{1}{(s-iw_{n})(s+iw_{n})}=\frac{1}{s^{2}+w_{n}^{2}}=\frac{1}{w_{n}} \frac{w_{n}}{s^{2}+w_{n}}

由拉普拉斯反变换L\left[\sin at\right]=\frac a{s^2+a^2}可知

X{(t)}=\frac{1}{w_{n}}\sin (w_{n}t)

所体现出两个根在虚轴两侧,一直震荡不会收敛。

  •  当\zeta<0

X(s)=\frac{1}{(s+\zeta w_{n}- iw_{n}\sqrt{\zeta^{2}-1})(s+\zeta w_{n}+ iw_{n}\sqrt{\zeta^{2}-1})}=\frac{1}{(s+\zeta w_{n})^2+w_{n}^{2}(\zeta^{2}-1)}

定义阻尼固有频率

w_d=w_{n}\sqrt{\zeta^{2}-1}

此时有

X(s)=\frac{1}{(s+\zeta w_{n})^2+w_{d}^{2}}

X{(s)}=\frac{1}{(s+\zeta w_{n})^{2}+w_{d}^{2}}=\frac{1}{w_{d}} \frac{w_{d}}{(s+\zeta w_{n})^{2}+w_{d}}

常用拉氏变换表 - YKR - 博客园 (cnblogs.com)

符合指数衰减正弦波

X{(s)}=\frac{1}{w_{d}}e^{-\zeta w_{n}t}\sin (w_{d}t)

若将根向左移动,那么系统的震荡频率不变,但是收敛的速度会变快。

分析根轨迹时基于开环传递函数极点分析,通过G(s)判断1+G(s)=0,若存在H(s),那么G(s)代表着G(s)H(s)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值