[足式机器人]Part2 Dr. CAN学习笔记-Ch01自动控制原理

本文仅供学习使用
本文参考:
B站:DR_CAN
控制之美(卷1)


1. 开环系统与闭环系统Open/Closed Loop System

1.1 EG1: 烧水与控温水壶

在这里插入图片描述
开环控制系统(Open Loop Control System):其中 R ( s ) R(s) R(s)参考值(Reference)或目标值, C ( s ) C(s) C(s)控制器,原动态系统的传递函数 G ( s ) G(s) G(s)被称为控制系统的开环传递函数(Open Loop Transfer Function), 控制量 U ( s ) U(s) U(s),也就是原动态系统的输入。控制系统的输出等于原动态系统的输出 X ( s ) X(s) X(s)
在这里插入图片描述
若将输出 X ( s ) X(s) X(s)反馈到输入端,则可以形成一个闭环控制系统。其中,参考值与输出之间的差称为误差(Error), E ( s ) = R ( s ) − X ( s ) E(s)=R(s)-X(s) E(s)=R(s)X(s),其对应的时间函数是 e ( t ) = r ( t ) − x ( t ) e(t)=r(t)-x(t) e(t)=r(t)x(t),控制器 C ( s ) C(s) C(s)将根据误差决定控制量 U ( s ) U(s) U(s)
在这里插入图片描述

1.2 EG2: 蓄水与最终水位

在这里插入图片描述

h ˙ = q i n A − g h A R \dot{h}=\frac{q_{in}}{A}-\frac{gh}{AR} h˙=AqinARgh
A = 1 A=1 A=1. 目标: h = x → x d h=x\rightarrow x_d h=xxd —— 保持液面高度
x d = C R g , C = x d g R = u , G ( s ) = 1 S + g R x_d=\frac{CR}{g},C=\frac{x_dg}{R}=u,G\left( s \right) =\frac{1}{S+\frac{g}{R}} xd=gCR,C=Rxdg=u,G(s)=S+Rg1

1.3 闭环控制系统

定义控制系统的闭环传递函数(Closed Loop Transfer Function)

在这里插入图片描述
X = D G 1 + H D G V X=\frac{DG}{1+HDG}V X=1+HDGDGV

2. 稳定性分析Stability

本章将讨论自动控制理论中最重要的概念——稳定性(Stability)。稳定性是控制系统的基础,如果系统不稳定,其他的性能则无从说起。误差分析、性能分析和最优化分析等只有使用在稳定系统上才有意义。在前面的章节中,已经或多或少地涉及了一些稳定性的概念,本章中将以更加严谨的数学语言介绍并讨论稳定性的概念。本章的学习目标为:

  • 掌握李雅普诺夫意义下的稳定性、渐近稳定及输入输出稳定的定义
  • 掌握经典控制理论通过传递函数的极点判断稳定性的方法
  • 掌握使用状态空间方程判定系统稳定性的方法

结合CH04-5

2.1 序言

在这里插入图片描述

2.2 稳定的分类

在这里插入图片描述

2.3 稳定的对象

明确分析对象
在这里插入图片描述
e = T a r g e t    −    θ e=Target\,\,-\,\,\theta e=Targetθ
Does the error converge to zero or not —— error dynamics stable or not

2.4 稳定的系统

2.4.1 Open loop 开环

在这里插入图片描述
在这里插入图片描述

传递函数极点的实数部分( p i p_{\mathrm{i}} pi σ k \sigma _{\mathrm{k}} σk)将决定系统输出 x ( t ) x\left( t \right) x(t)的稳定性:

  • 当所有的 p i < 0 p_{\mathrm{i}}<0 pi<0且所有的 σ k < 0 \sigma _{\mathrm{k}}<0 σk<0时, x ( t ) x\left( t \right) x(t)将会随着时间的增加而不断衰减并趋于0,满足渐进稳定
  • 如果有任何一个或以上的 p i p_{\mathrm{i}} pi σ k \sigma _{\mathrm{k}} σk大于0, x ( t ) x\left( t \right) x(t)将会随着时间的增加而发散。因此系统是不稳定的。
  • 如果存在着等于0的情况, x ( t ) x\left( t \right) x(t)会随着时间的增加趋于常数或者保持在一个范围内振荡(有界)。这种情况下,系统符合李雅普诺夫意义下的稳定性。

如果传递函数极点存在着虚数部分 w k w_{\mathrm{k}} wk,则系统会产生振荡。振荡部分 sin ⁡ ( w k t + φ k ) \sin \left( w_{\mathrm{k}}t+\varphi _{\mathrm{k}} \right) sin(wkt+φk)与指数部分相乘,并不会影响系统的稳定性。

2.4.2 Closed loop 闭环

在这里插入图片描述
在这里插入图片描述

2.4.3 例子

EG1:
在这里插入图片描述
EG2:
在这里插入图片描述

2.5 系统稳定性的讨论

在这里插入图片描述
在这里插入图片描述
从经典控制理论的角度来看,所描述的动态系统稳定的条件是:传递函数的极点均在复平面的左半部分

此外,当系统的单位冲激响应满足渐近稳定条件时,针对每一个有界的输人 u ( t ) u(t) u(t),系统的输出 x ( t ) x(t) x(t)也都会有界,不会发散到无限大。这种性质被称为有界输入有界输出稳定(BIBO Stable,Bounded Input Bounded Output Stable)。如果一个系统不满足BIBO稳定,就意味着一个有限的输入可能会导致无穷幅度的输出,这很有可能会对系统造成破坏性的影响。

BIBO稳定严格要求系统单位冲激响应要满足渐近稳定。如果系统的传递函数存在虚轴上的极点(临界稳定),则不符合BIBO稳定,因为有限的输入也有可能令系统产生共振,使得输出的振幅无限;

2.6 补充内容——Transfer Function(传递函数) - nonzero Initial Condition(非零初始条件)

在这里插入图片描述

3. 燃烧卡路里-系统分析实例

看完了动态系统的数学建模方法、一阶和二阶系统的时域响应,以及系统容都是为控制器的设计在打基础。本章将重点分析基于传的稳定性分析,这些传递函数的控制器设计,本章的学习目标为:

  • 掌握闭环控制系统的控制器设计流程与思路
  • 理解比例控制算法及其局限性。
  • 理解终值定理并掌握如何运用它去分析控制系统的稳态误差。
  • 理解积分控制算法及其参数对系统的作用,并了解其局限性。
  • 了解如何使用饱和函数处理含约束的系统。

3.1 数学模型

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.2 比例控制 Proprotional Control

在这里插入图片描述
人们在控制体重时会很自然地想到一种策略:当体重大于目标值的时候,那就多运动,少吃饭,而且超重得越多,就越要多运动,越要少吃饭。反之亦然。这种简单粗暴的策略被称为比例控制(Proportional Controller),即系统的控制量与误差成正比,令
u ( t ) = K p e ( t ) u\left( t \right) =K_{\mathrm{p}}e\left( t \right) u(t)=Kpe(t)
其中, K p > 0 K_p>0 Kp>0,称为比例增益(Proportional Gain)。其拉普拉斯变换为
U ( s ) = K p E ( s ) U\left( s \right) =K_{\mathrm{p}}E\left( s \right) U(s)=KpE(s)
在这里插入图片描述
在这里插入图片描述

系统误差的终值称为稳态误差(Steady State Error)

所以 K p K_p Kp越大,稳态误差 e s s e_{ss} ess就越小,这和上图所示的现象一致( K p K_p Kp越大,输出的终值 x ( ∞ ) x\left( \infty \right) x()越靠近参考值)。当 K p → ∞ K_{\mathrm{p}}\rightarrow \infty Kp时, e s s = 0 e_{ss}=0 ess=0。但是在实际情况中, K p K_p Kp不可能无限地增大,例如本例中每天的热量摄入和运动都是有限的。这就决定了比例控制的局限性,它无法消除稳态误差。我们需要引入新的手段和方法来解决这个问题。

4. 终值定理和稳态误差Final Value Theorem & Steady State Error

在这里插入图片描述
上述稳态误差的求解用到了分式分解法和拉普拉斯逆变换,整个过程比较复杂,尤其是针对高阶的系统,计算量会非常大。为了快速得到系统的稳态值,本节将引入终值定理(Final Value Theorem,FVT)。这一定理将时间趋于无穷时的时域表达与复数域之间联系起来。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5. 比例积分控制器Proportional-Intefral Controller

消除稳态误差——设计新的控制器

5.1 积分控制

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
说明在引入积分控制器之后,原始的一阶系统变成了二阶系统,上式对应了二阶系统的阶跃响应。类比二阶系统的一般形式,得到此二阶系统的阻尼比 ζ ζ ζ,和固有频率 w n w_n wn
{ 2 ζ w n = a w n 2 = a K I ⇒ { ζ = a 2 a K I w n = a K I \begin{cases} 2\zeta w_{\mathrm{n}}=a\\ {w_{\mathrm{n}}}^2=aK_{\mathrm{I}}\\ \end{cases}\Rightarrow \begin{cases} \zeta =\frac{a}{2\sqrt{aK_{\mathrm{I}}}}\\ w_{\mathrm{n}}=\sqrt{aK_{\mathrm{I}}}\\ \end{cases} {2ζwn=awn2=aKI{ζ=2aKI awn=aKI

此时的控制器设计就像是在设计一个“看不见”的弹簧质量阻尼系统,通过改变控制参数来调节此系统的固有频率和阻尼比。

在这里插入图片描述
说明了积分控制器设计中调参时的矛盾:在使用积分控制时,提高积分增益 K I K_I KI可以加快系统的响应速度,但与此同时,超调量也会增加。
在这里插入图片描述

请读者思考一是一个常数,而是随时间增加的斜坡函数问题,那么它的稳态误差会是多少?如果想要消除它的稳态误差,应该使用什么样的控制器?请读者根据本节积分器设计思路自行推导,有兴趣的读者可以参考其他书籍有关系统类型的内容进行对比。

5.2 比例积分控制

在这里插入图片描述
K I = 1 K_{\mathrm{I}}=1 KI=1时,系统输出如下所示:
在这里插入图片描述
积分控制器的帮助下(正如我们所设计的),系统的输出最终会收敛于参考值 r = 65 k g r=65kg r=65kg,即使系统存在着扰动,积分控制器依然成功地消除了稳态误差。比较比例控制积分控制会发现两个显著的区别。

  1. 使用积分控制器后,系统的输出存在振动和超调量。这是因为积分控制器的引入使得原来的一阶系统变成了二阶系统。
  2. 在观察横轴时可以发现,积分控制下的系统响应速度要远远慢于比例控制。从直观上理解,积分控制需要误差的累加,而累加则需要时间,因此反应相对“迟钝”。

——比例控制的局限性,说明只依靠比例控制无法消除稳态误差。本节将引入新的控制手段来解决这一问题。

综上所述,比例控制可以使系统快速地响应,而积分控制可以消除稳态误差,如果将二者结合起来,便可以兼顾两种控制器的优点,即比例积分控制
在这里插入图片描述
在这里插入图片描述

在使用比例积分控制器后,体重控制的系统框图如下所示。
在这里插入图片描述
选取 K p = 200 , K I = 1 K_p=200,K_I=1 Kp=200,KI=1时,系统输出 x ( t ) x(t) x(t)随时间的变化与控制量 u ( t ) u(t) u(t)随时间的变化如下所示。可以发现,比例积分控制很好地将系统稳定在参考值上。而且相较于积分控制,其响应速度有了很大的改善。在实际工程中,参数的调节需要依靠经验。
在这里插入图片描述

在这里插入图片描述

5.3 含有限制条件的控制器设计

很遗憾,前面几节推导出的控制器在现实生活中都无法实现,以最后的比例积分控制器为例:控制量高达 u ( t ) = − 5000 k C a l u(t)=-5000kCal u(t)=5000kCal。请回想一下控制量 u ( t ) u(t) u(t)的物理意义,它是原体重动态系统的输入 u ( t ) = E i − E a u(t)=E_i-E_a u(t)=EiEa。它代表了净热量输入(食物热量摄入减去额外运动消耗)。因此 − 5000 k C a l -5000kCal 5000kCal就意味着要不吃不喝的同时慢跑至少10小时。这当然不是一个长久的方法,如果真有人这样做的话,恐怕连一天都坚持不了。

在实际工程应用中,控制量在很多情况下都是有限制条件(约束)的,例如在自动巡航系统中的发动机转速和扭矩,空调系统中的最大出风量等,它们都有工作上限。体重控制系统的限制是每日的净热量输入应当在一个人可以承受的范围内。处理这类带约束的问题有很多的方法,这里介绍一个最简单的方式,在框图中加入一个饱和函数(Saturation Function)来限制 U ( s U(s U(s)幅度:
在这里插入图片描述
饱和函数的定义为:
u ( t ) = { u max ⁡ u ( t ) u min ⁡ u ( t ) > u max ⁡ u max ⁡ ⩾ u ( t ) ⩾ u min ⁡ u ( t ) < u min ⁡ u\left( t \right) =\begin{cases} u_{\max}\\ u\left( t \right)\\ u_{\min}\\ \end{cases}\begin{array}{c} u\left( t \right) >u_{\max}\\ u_{\max}\geqslant u\left( t \right) \geqslant u_{\min}\\ u\left( t \right) <u_{\min}\\ \end{array} u(t)= umaxu(t)uminu(t)>umaxumaxu(t)uminu(t)<umin
使用中根据具体情况设置输入的最大值 u max ⁡ u_{\max} umax和最小值 u min ⁡ u_{\min} umin

在这里插入图片描述

5.4 Summary

  • 比例控制:
    系统的输入与误差成正比,即 u ( t ) = K p e ( t ) u(t)=K_pe(t) u(t)=Kpe(t)
    比例控制简单易行,系统响应速度快,但是无法消除稳态误差。
  • 终值定理:
    如果 lim ⁡ t → ∞ x ( t ) \underset{t\rightarrow \infty}{\lim}x(t) tlimx(t)存在,那么 lim ⁡ t → ∞ x ( t ) = lim ⁡ s → 0 s X ( s ) \underset{t\rightarrow \infty}{\lim}x(t)=\underset{s\rightarrow 0}{\lim}sX(s) tlimx(t)=s0limsX(s)
  • 积分控制:
    系统的输入与误差的积分成正比,即 u ( t ) = K I ∫ 0 t e ( t ) d t u\left( t \right) =K_{\mathrm{I}}\int_0^t{e\left( t \right)}\mathrm{d}t u(t)=KI0te(t)dt
    积分控制可以改善稳态误差,但是会引入振动且响应迟缓。
  • 比例积分控制:
    将比例控制与积分控制相结合, u ( t ) = K p e ( t ) + K I ∫ 0 t e ( t ) d t u\left( t \right) =K_{\mathrm{p}}e\left( t \right) +K_{\mathrm{I}}\int_0^t{e\left( t \right)}\mathrm{d}t u(t)=Kpe(t)+KI0te(t)dt
    既可以改善稳态误差,又可以改善积分控制的响应速度。
  • 含有限制条件的控制器设计:
    某些控制系统存在物理限制,可以使用一个饱和函数来限制系统的输入幅度。

6. 根轨迹Root locus

本章将继续讨论基于传递函数的控制器设计,将引入一个新的图解的方法——根轨迹法(Root Locus)。根轨迹法中的“”指的是闭环控制系统特征方程的根,即闭环传递函数的极点。“轨迹”则是指极点在复平面中位置的变化规律

  • 熟悉根轨迹的研究方法和研究目标。
  • 了解手绘根轨迹的基本规则。
  • 掌握根轨迹的几何性质。
  • 掌握使用根轨迹法设计控制器/补偿器的流程。
  • 理解比例微分控制超前补偿器与滞后补偿器的工作原理和性质。

6.1 根轨迹的研究目标与方法

根轨迹(Root Locus)研究的是当比例增益 K K K 0 0 0 + ∞ +\infty + 变化的时候,闭环控制系统传递函数特征方程的根(闭环传递函数 G c l = K G ( s ) 1 + K G ( s ) G_{\mathrm{cl}}=\frac{KG\left( s \right)}{1+KG\left( s \right)} Gcl=1+KG(s)KG(s)的极点,即 1 + K G ( s ) = 0 1+KG\left( s \right) =0 1+KG(s)=0时的 s s s值)在复平面中位置的变化规律。
在这里插入图片描述
根轨迹研究的目标是闭环传递函数 G c l G_{\mathrm{cl}} Gcl极点的变化规律,而它的研究方法则是通过分析系统的开环传递函数 G ( s ) G(s) G(s)实现的。因此在使用根轨迹分析系统的时候,首先需要找到闭环传递函数分母部分为 1 + K G ( s ) 1+KG(s) 1+KG(s)中的 G ( s ) G(s) G(s)后再进行处理。
在这里插入图片描述
在这里插入图片描述
分析下图根轨迹:
在这里插入图片描述
在这里插入图片描述
其闭环传递函数分母部分为 1 + H ( s ) K G ( s ) 1+H(s)KG(s) 1+H(s)KG(s),因此需要通过 G ( s ) H ( s ) G(s)H(s) G(s)H(s)进行根轨迹分析。

6.2 根的作用

G ( s ) = s + 3 s 2 + 2 s + 4 G\left( s \right) =\frac{s+3}{s^2+2s+4} G(s)=s2+2s+4s+3
Matlab可绘制 riocus(g)
掌握根的变化规律 , 设计控制器,补偿器 : Compentator Lead Lag…

根 —— 极点

  1. 一阶系统
    在这里插入图片描述
  2. 二阶系统
    在这里插入图片描述
    在这里插入图片描述
  3. 三阶系统
    在这里插入图片描述

在这里插入图片描述

6.3 手绘技巧

Matlab可以精确绘制——手绘——掌握根的变化规律——设计控制器

根轨迹的基本形式

在这里插入图片描述
根轨迹研究的是: 当 K K K从0到 + ∞ +\infty +时,闭环系统根(极点)位置的变化规律

1 + K G ( s ) = 0 , G ( s ) = N ( s ) D ( s ) = ( s − z 1 ) ( s − z 2 ) ⋯ ( s − z m ) ( s − p 1 ) ( s − p 2 ) ⋯ ( s − p n ) 1+KG\left( s \right) =0,G\left( s \right) =\frac{N\left( s \right)}{D\left( s \right)}=\frac{\left( s-z_1 \right) \left( s-z_2 \right) \cdots \left( s-z_{\mathrm{m}} \right)}{\left( s-p_1 \right) \left( s-p_2 \right) \cdots \left( s-p_{\mathrm{n}} \right)} 1+KG(s)=0,G(s)=D(s)N(s)=(sp1)(sp2)(spn)(sz1)(sz2)(szm)

其中, z 1 ⋯ z m z_1\cdots z_{\mathrm{m}} z1zm零点 Zeros ⊙ \odot p 1 ⋯ p n p_1\cdots p_{\mathrm{n}} p1pn极点 Poles × \times ×

  • 规则1 :共有 n n n条根轨迹, 若 n > m n>m n>m;共有 m m m条根轨迹,若 m > n m>n m>n ⇐ max ⁡ { m , n } \Leftarrow \max \left\{ m,n \right\} max{m,n}
  • 规则2 :若 m = n m=n m=n,随着 K K K 0 → ∞ 0\rightarrow \infty 0 , 根轨迹从 G ( s ) G\left( s \right) G(s)的极点向零点移动: 1 + K G ( s ) = 0 ⇒ D ( s ) + K N ( s ) = 0 1+KG\left( s \right) =0\Rightarrow D\left( s \right) +KN\left( s \right) =0 1+KG(s)=0D(s)+KN(s)=0 K → 0 K\rightarrow 0 K0 D ( s ) = 0 D\left( s \right) =0 D(s)=0(极点); K → ∞ K\rightarrow \infty K N ( s ) = 0 N\left( s \right) =0 N(s)=0 (零点)
  • 规则3:实轴上的根轨迹存在于从右向左第奇数个极点/零点的左边
  • 规则4:若附属跟存在,则一定是共轭的,所以根轨迹通过实轴对称
  • 规则5:若 n > m n>m n>m , 则有 n − m n-m nm个极点指向无穷;若 m > n m>n m>n , 则有 m − n m-n mn条根轨迹从无穷指向零点
  • 规则6:根轨迹延渐近线移动,渐近线与实轴的交点 σ = ∑ p − ∑ z n − m \sigma =\frac{\sum{p}-\sum{z}}{n-m} σ=nmpz渐近线与实轴的夹角 θ = 2 q + 1 n − m π , q = 0 , 1 , . . . , n − m − 1 / m − n − 1 \theta =\frac{2q+1}{n-m}\pi ,q=0,1,...,n-m-1/m-n-1 θ=nm2q+1π,q=0,1,...,nm1/mn1

在这里插入图片描述

6.4 分离点/汇合点&根轨迹的几何性质

根据规则4,从 p 2 , 3 p_{2,3} p2,3出发的两条根轨迹分支汇聚后将同时离开实轴。离开实轴的这个点称为分离点(Breakaway Point)。通过下面的例子介绍分离点的计算方法。

以 2nd-order system 为例:
在这里插入图片描述
Properties of Root locus
计算汇合点(Break-in Point)的位置
在这里插入图片描述
以上性质可以用来判断给定值 s = σ + j w s=\sigma +jw s=σ+jw是否为 G c l ( s ) G_{\mathrm{cl}}\left( s \right) Gcl(s)的根(极点),这对增益调节及控制器的设计非常重要:

在这里插入图片描述
因为增益 K K K是一个常数,因此不会改变复数 K G ( s ) KG\left( s \right) KG(s)的复角,用来判断给定值 s = σ + j w s=\sigma +jw s=σ+jw是否在 G c l ( s ) G_{\mathrm{cl}}\left( s \right) Gcl(s)的轨迹上
在这里插入图片描述

6.5 根轨迹的几何性质

则传递函数 G ( s ) = N ( s ) D ( s ) = ( s − z 1 ) ( s − z 2 ) ⋯ ( s − z m ) ( s − p 1 ) ( s − p 2 ) ⋯ ( s − p n ) G\left( s \right) =\frac{N\left( s \right)}{D\left( s \right)}=\frac{\left( s-z_1 \right) \left( s-z_2 \right) \cdots \left( s-z_{\mathrm{m}} \right)}{\left( s-p_1 \right) \left( s-p_2 \right) \cdots \left( s-p_{\mathrm{n}} \right)} G(s)=D(s)N(s)=(sp1)(sp2)(spn)(sz1)(sz2)(szm)复角为:
M = ∣ G ( s = σ + j w ) ∣ = ∏ 零点到 s 的距离 ∏ 极点到 s 的距离 ∣ s = σ + j w M=\left| G\left( s=\sigma +jw \right) \right|=\frac{\prod{\text{零点到}s\text{的距离}}}{\prod{\text{极点到}s\text{的距离}}}\mid_{s=\sigma +jw}^{} M=G(s=σ+jw)=极点到s的距离零点到s的距离s=σ+jw
φ = ∠ G ( s = σ + j w ) = ( ∑ 零点到 s 的夹角 − ∑ 极点到 s 的夹角 ) ∣ s = σ + j w \varphi =\angle G\left( s=\sigma +jw \right) =\left( \sum{\text{零点到}s\text{的夹角}}-\sum{\text{极点到}s\text{的夹角}} \right) \mid_{s=\sigma +jw}^{} φ=G(s=σ+jw)=(零点到s的夹角极点到s的夹角)s=σ+jw

7 PD——Lead Compensator超前补偿器(调节根轨迹)——比例微分控制

基于根轨迹的控制器设计:本节将利用根轨迹的几何性质设计控制器【在根轨迹理论中称为补偿器(Compensator)】通过增加开环传递函数 G ( s ) G(s) G(s)的零点/极点来改变闭环传递函数 G c l ( s ) G_{\mathrm{cl}}\left( s \right) Gcl(s)的根轨迹,从而改变系统的动态响应。

在这里插入图片描述

7.1 Plot Rootlocus 绘制根轨迹

G ( s ) = 1 s ( s + 2 ) G\left( s \right) =\frac{1}{s\left( s+2 \right)} G(s)=s(s+2)1
在这里插入图片描述

7.2 System Performance 系统表现

输入Input —— δ ( t ) \delta \left( t \right) δ(t) 单位冲激

  • K K K 较小时, p 1 , p 2 p_1,p_2 p1,p2 x ( t ) = c 1 e p 1 t + c 2 e p 2 t , p 1 < 0 , p 2 < 0 x\left( t \right) =c_1e^{p_1t}+c_2e^{p_2t},p_1<0,p_2<0 x(t)=c1ep1t+c2ep2t,p1<0,p2<0
    在这里插入图片描述
  • K K K 较大时,根在复平面: p 1 , p 2 p_1,p_2 p1,p2 x ( t ) = c e − t sin ⁡ ω n t x\left( t \right) =ce^{-t}\sin \omega _{\mathrm{n}}t x(t)=cetsinωnt - 无论如何改变 K K K值,都无法改变收敛速度
    -在这里插入图片描述

7.3 改善/加快收敛速度

——改变根轨迹,希望根在 − 2 + 2 3 -2+2\sqrt{3} 2+23
G ( s ) = 1 s ( s + 2 ) G\left( s \right) =\frac{1}{s\left( s+2 \right)} G(s)=s(s+2)1
在根轨迹上的点满足: ∠ K G ( s ) = − π \angle KG\left( s \right) =-\pi KG(s)=π (零点到根的夹角和 - 极点到根的夹角和)
在这里插入图片描述

7.4 超前补偿器 Lead Comperastor

H ( s ) = s − z s − p , ∥ z ∥ < ∥ p ∥ H\left( s \right) =\frac{s-z}{s-p},\left\| z \right\| <\left\| p \right\| H(s)=spsz,z<p
在这里插入图片描述
在这里插入图片描述

8 PI——Lag Compensator滞后补偿器——比例积分控制

稳态误差入手(steady state Error)
在这里插入图片描述
误差 Error E ( s ) = R ( s ) − X ( s ) = R ( s ) − E ( s ) ⋅ K G ( s ) ⇒ E ( s ) ( 1 + K G ( s ) ) = R ( s ) ⇒ E ( s ) = 1 1 + K G ( s ) R ( s ) = R ( s ) 1 1 + K N ( s ) D ( s ) = 1 s 1 1 + K N ( s ) D ( s ) E\left( s \right) =R\left( s \right) -X\left( s \right) =R\left( s \right) -E\left( s \right) \cdot KG\left( s \right) \Rightarrow E\left( s \right) \left( 1+KG\left( s \right) \right) =R\left( s \right) \Rightarrow E\left( s \right) =\frac{1}{1+KG\left( s \right)}R\left( s \right) =R\left( s \right) \frac{1}{1+K\frac{N\left( s \right)}{D\left( s \right)}}=\frac{1}{s}\frac{1}{1+K\frac{N\left( s \right)}{D\left( s \right)}} E(s)=R(s)X(s)=R(s)E(s)KG(s)E(s)(1+KG(s))=R(s)E(s)=1+KG(s)1R(s)=R(s)1+KD(s)N(s)1=s11+KD(s)N(s)1

单位阶跃unit step R ( s ) = 1 s R\left( s \right) =\frac{1}{s} R(s)=s1
稳态误差Steady State Error——FVT终值定理
e s s = lim ⁡ t → ∞ e ( t ) = lim ⁡ s → o s E ( s ) = lim ⁡ s → o s ⋅ 1 s 1 1 + K N ( s ) D ( s ) = 1 1 + K N ( 0 ) D ( 0 ) = D ( 0 ) D ( 0 ) + K N ( 0 ) ess=\underset{t\rightarrow \infty}{\lim}e\left( t \right) =\underset{s\rightarrow o}{\lim}sE\left( s \right) =\underset{s\rightarrow o}{\lim}s\cdot \frac{1}{s}\frac{1}{1+K\frac{N\left( s \right)}{D\left( s \right)}}=\frac{1}{1+K\frac{N\left( 0 \right)}{D\left( 0 \right)}}=\frac{D\left( 0 \right)}{D\left( 0 \right) +KN\left( 0 \right)} ess=tlime(t)=solimsE(s)=solimss11+KD(s)N(s)1=1+KD(0)N(0)1=D(0)+KN(0)D(0)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

9 PID——比例积分微分控制器

P —— Proportional
I —— Integral
D —— Derivative

  • 当前误差/过去误差/误差的变化趋势
    在这里插入图片描述
  1. K p ⋅ e K_{\mathrm{p}}\cdot e Kpe:比例增益——当前误差
  2. K I ⋅ ∫ e d t K_{\mathrm{I}}\cdot \int{e}dt KIedt:积分增益——过去误差-积累
  3. K D ⋅ d e d t K_{\mathrm{D}}\cdot \frac{\mathrm{d}e}{\mathrm{d}t} KDdtde :微分增益——变化趋势 (对噪音敏感)
    L [ u ] = L [ K P ⋅ e + K I ⋅ ∫ e d t + K D ⋅ d e d t ] ⇒ U ( s ) = ( K P + K I 1 s + K D s ) ⋅ E ( s ) \mathcal{L} \left[ u \right] =\mathcal{L} \left[ K_{\mathrm{P}}\cdot e+K_{\mathrm{I}}\cdot \int{e}\mathrm{d}t+K_{\mathrm{D}}\cdot \frac{\mathrm{d}e}{\mathrm{d}t} \right] \Rightarrow U\left( s \right) =\left( K_{\mathrm{P}}+K_{\mathrm{I}}\frac{1}{s}+K_{\mathrm{D}}s \right) \cdot E\left( s \right) L[u]=L[KPe+KIedt+KDdtde]U(s)=(KP+KIs1+KDs)E(s)

PID
PD控制:提高稳定性,改善瞬态
PI控制:改善稳态误差

Summary:

  • 根轨迹的研究对象预定义:
    根轨迹的应用与研究要满足单位反馈闭环控制系统图标准形式。
    在这里插入图片描述
    根轨迹的研究方法是通过研究开环传递函数 G ( s ) G(s) G(s)的极点和零点来判断闭环传递函数 G ( s ) G(s) G(s)特征方程根(极点)随增益 K K K的变化趋势。
  • 根轨迹绘制的基本规则:
    根轨迹有6个基本规则:
    规则1: 如果 n > m n>m n>m,则根轨迹在复平面上共有 n n n条分支;如果 m > n m>n m>n,则根轨迹在复平面上共有 m m m条分支。
    规则2:当 n = m n=m n=m时,随着 K K K 0 0 0增加到正无穷,根轨迹从 G ( s ) G(s) G(s)的极点向零点移动。
    规则3:实轴上的根轨迹存在于从右向左数第奇数个极点/零点的左边。
    规则4:若复数根存在,则一定是共轭的,所以根轨迹是相对于实轴对称的。
    规则5:如果 n > m n>m n>m,则有 ( n — m ) (n—m) (nm)条分支从极点指向无穷;如果 n < m n<m n<m,则有 ( m — n ) (m—n) (mn)条分支从无穷指向零点。
    规则6:根轨迹沿着渐近线移动,渐近线与实轴的交点为 σ a = Σ p n − Σ z m n − m \sigma _{\mathrm{a}}=\frac{\varSigma _{\mathrm{p}_{\mathrm{n}}}-\varSigma _{\mathrm{z}_{\mathrm{m}}}}{n-m} σa=nmΣpnΣzm,渐近线与实轴的夹角为: θ = 2 q + 1 n − m , q = { 0 , 1 , ⋯   , n − m − 1 0 , 1 , ⋯   , m − n − 1 n > m n < m \theta =\frac{2q+1}{n-m},q=\begin{cases} 0,1,\cdots ,n-m-1\\ 0,1,\cdots ,m-n-1\\ \end{cases}\begin{array}{c} n>m\\ n<m\\ \end{array} θ=nm2q+1,q={0,1,,nm10,1,,mn1n>mn<m
  • 根轨迹的几何性质:
    在根轨迹上的点,需要满足:
    ∣ K G ( s ) ∣ = 1 \left| KG\left( s \right) \right|=1 KG(s)=1
    ∠ G ( s ) = − ( 2 q + 1 ) π , q = ± 0 , ± 1 , ± 2 , ⋯ \angle G\left( s \right) =-\left( 2q+1 \right) \pi ,q=\pm 0,\pm 1,\pm 2,\cdots G(s)=(2q+1)π,q=±0,±1,±2,
  • 补偿器设计:
    超前补偿器: C ( s ) = s − z c s − p c ( p c < z c < 0 ) 0 C\left( s \right) =\frac{s-z_{\mathrm{c}}}{s-p_{\mathrm{c}}}\left( p_{\mathrm{c}}<z_{\mathrm{c}}<0 \right) 0 C(s)=spcszc(pc<zc<0)0,可以提高系统的响应速度。
    滞后补偿器: C ( s ) = s − z c s − p c ( z c < p c < 0 ) C\left( s \right) =\frac{s-z_{\mathrm{c}}}{s-p_{\mathrm{c}}}\left( z_{\mathrm{c}}<p_{\mathrm{c}}<0 \right) C(s)=spcszc(zc<pc<0),可以改善系统的稳态误差。
  • 比例积分微分控制器:
    时域表达: u ( t ) = u P ( t ) + u I ( t ) + u D ( t ) = K P e ( t ) + K I ∫ e ( t ) d t + K D d e ( t ) d t u\left( t \right) =u_{\mathrm{P}}\left( t \right) +u_{\mathrm{I}}\left( t \right) +u_{\mathrm{D}}\left( t \right) =K_{\mathrm{P}}e\left( t \right) +K_{\mathrm{I}}\int{e\left( t \right)}\mathrm{d}t+K_{\mathrm{D}}\frac{\mathrm{d}e\left( t \right)}{\mathrm{d}t} u(t)=uP(t)+uI(t)+uD(t)=KPe(t)+KIe(t)dt+KDdtde(t)
    传递函数表达: G ( s ) = K P + K I 1 s + K D s G\left( s \right) =K_{\mathrm{P}}+K_{\mathrm{I}}\frac{1}{s}+K_{\mathrm{D}}s G(s)=KP+KIs1+KDs
    兼具比例微分控制与比例积分控制的优点,直观的控制方法。

10 奈奎斯特稳定性判据-Nyquist Stability Criterion

在这里插入图片描述

在这里插入图片描述
Cauchy’s Argument Priciple 柯西幅角原理
在这里插入图片描述

结论: s s s平面内顺时针画一条闭合曲线 A A A B B B曲线是 A A A通过 F ( s ) F(s) F(s)后在 F ( s ) F(s) F(s)平面上的映射, A A A曲线每包含一个 F ( s ) F(s) F(s)的零点(极点), B B B曲线就绕 ( 0 , 0 ) (0,0) (0,0)点顺时针(逆时针)一圈

在这里插入图片描述

  • 55
    点赞
  • 32
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
Dr-can的自适应控制答案是一种智能化的控制方法,它能根据环境变化和系统性能要求自动调整控制参数,以使系统能够在不同工况下达到最佳控制效果。 首先,自适应控制能够实时监测和检测系统的运行状态,并对系统进行反馈调整。通过采集传感器数据,自适应控制能够不断更新控制器的参数,以适应系统运行过程中的变化。这样,控制器能够及时地对系统进行调整,以维持其最佳运行状态。 其次,自适应控制还能够根据系统的性能要求自动调整控制策略。通过预设的性能要求和优化算法,自适应控制可以根据不同的要求来调整系统的响应速度、稳定性和控制精度。这样,在不同工况下,控制器能够自动切换不同的控制策略,以满足系统运行的需求。 此外,自适应控制还具有鲁棒性和鲁班性能。鲁棒性指的是控制器对于外部扰动和参数变化的抗干扰能力,而鲁班性能指的是控制器对于模型误差和不确定性的适应能力。通过使用自适应控制,系统能够适应环境的变化和模型参数的不确定性,从而提高系统的鲁棒性和鲁班性能,使系统能够在各种不确定性条件下稳定运行。 总之,在工业自动化和控制领域,自适应控制是一种先进的控制方法,能够根据环境变化和系统性能要求自动调整控制参数,以实现系统的最佳控制效果。通过自适应控制,系统能够适应不同工况下的变化,并具有较好的鲁棒性和鲁班性能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

LiongLoure

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值