[足式机器人]Part2 Dr. CAN学习笔记-Ch01自动控制原理

本文仅供学习使用
本文参考:
B站:DR_CAN
控制之美(卷1)


1. 开环系统与闭环系统Open/Closed Loop System

1.1 EG1: 烧水与控温水壶

在这里插入图片描述
开环控制系统(Open Loop Control System):其中 R ( s ) R(s) R(s)参考值(Reference)或目标值, C ( s ) C(s) C(s)控制器,原动态系统的传递函数 G ( s ) G(s) G(s)被称为控制系统的开环传递函数(Open Loop Transfer Function), 控制量 U ( s ) U(s) U(s),也就是原动态系统的输入。控制系统的输出等于原动态系统的输出 X ( s ) X(s) X(s)
在这里插入图片描述
若将输出 X ( s ) X(s) X(s)反馈到输入端,则可以形成一个闭环控制系统。其中,参考值与输出之间的差称为误差(Error), E ( s ) = R ( s ) − X ( s ) E(s)=R(s)-X(s) E(s)=R(s)X(s),其对应的时间函数是 e ( t ) = r ( t ) − x ( t ) e(t)=r(t)-x(t) e(t)=r(t)x(t),控制器 C ( s ) C(s) C(s)将根据误差决定控制量 U ( s ) U(s) U(s)
在这里插入图片描述

1.2 EG2: 蓄水与最终水位

在这里插入图片描述

h ˙ = q i n A − g h A R \dot{h}=\frac{q_{in}}{A}-\frac{gh}{AR} h˙=AqinARgh
A = 1 A=1 A=1. 目标: h = x → x d h=x\rightarrow x_d h=xxd —— 保持液面高度
x d = C R g , C = x d g R = u , G ( s ) = 1 S + g R x_d=\frac{CR}{g},C=\frac{x_dg}{R}=u,G\left( s \right) =\frac{1}{S+\frac{g}{R}} xd=gCR,C=Rxdg=u,G(s)=S+Rg1

1.3 闭环控制系统

定义控制系统的闭环传递函数(Closed Loop Transfer Function)

在这里插入图片描述
X = D G 1 + H D G V X=\frac{DG}{1+HDG}V X=1+HDGDGV

2. 稳定性分析Stability

本章将讨论自动控制理论中最重要的概念——稳定性(Stability)。稳定性是控制系统的基础,如果系统不稳定,其他的性能则无从说起。误差分析、性能分析和最优化分析等只有使用在稳定系统上才有意义。在前面的章节中,已经或多或少地涉及了一些稳定性的概念,本章中将以更加严谨的数学语言介绍并讨论稳定性的概念。本章的学习目标为:

  • 掌握李雅普诺夫意义下的稳定性、渐近稳定及输入输出稳定的定义
  • 掌握经典控制理论通过传递函数的极点判断稳定性的方法
  • 掌握使用状态空间方程判定系统稳定性的方法

结合CH04-5

2.1 序言

在这里插入图片描述

2.2 稳定的分类

在这里插入图片描述

2.3 稳定的对象

明确分析对象
在这里插入图片描述
e = T a r g e t    −    θ e=Target\,\,-\,\,\theta e=Targetθ
Does the error converge to zero or not —— error dynamics stable or not

2.4 稳定的系统

2.4.1 Open loop 开环

在这里插入图片描述
在这里插入图片描述

传递函数极点的实数部分( p i p_{\mathrm{i}} pi σ k \sigma _{\mathrm{k}} σk)将决定系统输出 x ( t ) x\left( t \right) x(t)的稳定性:

  • 当所有的 p i < 0 p_{\mathrm{i}}<0 pi<0且所有的 σ k < 0 \sigma _{\mathrm{k}}<0 σk<0时, x ( t ) x\left( t \right) x(t)将会随着时间的增加而不断衰减并趋于0,满足渐进稳定
  • 如果有任何一个或以上的 p i p_{\mathrm{i}} pi σ k \sigma _{\mathrm{k}} σk大于0, x ( t ) x\left( t \right) x(t)将会随着时间的增加而发散。因此系统是不稳定的。
  • 如果存在着等于0的情况, x ( t ) x\left( t \right) x(t)会随着时间的增加趋于常数或者保持在一个范围内振荡(有界)。这种情况下,系统符合李雅普诺夫意义下的稳定性。

如果传递函数极点存在着虚数部分 w k w_{\mathrm{k}} wk,则系统会产生振荡。振荡部分 sin ⁡ ( w k t + φ k ) \sin \left( w_{\mathrm{k}}t+\varphi _{\mathrm{k}} \right) sin(wkt+φk)与指数部分相乘,并不会影响系统的稳定性。

2.4.2 Closed loop 闭环

在这里插入图片描述
在这里插入图片描述

2.4.3 例子

EG1:
在这里插入图片描述
EG2:
在这里插入图片描述

2.5 系统稳定性的讨论

在这里插入图片描述
在这里插入图片描述
从经典控制理论的角度来看,所描述的动态系统稳定的条件是:传递函数的极点均在复平面的左半部分

此外,当系统的单位冲激响应满足渐近稳定条件时,针对每一个有界的输人 u ( t ) u(t) u(t),系统的输出 x ( t ) x(t) x(t)也都会有界,不会发散到无限大。这种性质被称为有界输入有界输出稳定(BIBO Stable,Bounded Input Bounded Output Stable)。如果一个系统不满足BIBO稳定,就意味着一个有限的输入可能会导致无穷幅度的输出,这很有可能会对系统造成破坏性的影响。

BIBO稳定严格要求系统单位冲激响应要满足渐近稳定。如果系统的传递函数存在虚轴上的极点(临界稳定),则不符合BIBO稳定,因为有限的输入也有可能令系统产生共振,使得输出的振幅无限;

2.6 补充内容——Transfer Function(传递函数) - nonzero Initial Condition(非零初始条件)

在这里插入图片描述

3. 燃烧卡路里-系统分析实例

看完了动态系统的数学建模方法、一阶和二阶系统的时域响应,以及系统容都是为控制器的设计在打基础。本章将重点分析基于传的稳定性分析,这些传递函数的控制器设计,本章的学习目标为:

  • 掌握闭环控制系统的控制器设计流程与思路
  • 理解比例控制算法及其局限性。
  • 理解终值定理并掌握如何运用它去分析控制系统的稳态误差。
  • 理解积分控制算法及其参数对系统的作用,并了解其局限性。
  • 了解如何使用饱和函数处理含约束的系统。

3.1 数学模型

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.2 比例控制 Proprotional Control

在这里插入图片描述
人们在控制体重时会很自然地想到一种策略:当体重大于目标值的时候,那就多运动,少吃饭,而且超重得越多,就越要多运动,越要少吃饭。反之亦然。这种简单粗暴的策略被称为比例控制(Proportional Controller),即系统的控制量与误差成正比,令
u ( t ) = K p e ( t ) u\left( t \right) =K_{\mathrm{p}}e\left( t \right) u(t)=Kpe(t)
其中, K p > 0 K_p>0 Kp>0,称为比例增益(Proportional Gain)。其拉普拉斯变换为
U ( s ) = K p E ( s ) U\left( s \right) =K_{\mathrm{p}}E\left( s \right) U(s)=KpE(s)
在这里插入图片描述
在这里插入图片描述

系统误差的终值称为稳态误差(Steady State Error)

所以 K p K_p Kp越大,稳态误差 e s s e_{ss} ess就越小,这和上图所示的现象一致( K p K_p Kp越大,输出的终值 x ( ∞ ) x\left( \infty \right) x()越靠近参考值)。当 K p → ∞ K_{\mathrm{p}}\rightarrow \infty Kp时, e s s = 0 e_{ss}=0 ess=0。但是在实际情况中, K p K_p Kp不可能无限地增大,例如本例中每天的热量摄入和运动都是有限的。这就决定了比例控制的局限性,它无法消除稳态误差。我们需要引入新的手段和方法来解决这个问题。

4. 终值定理和稳态误差Final Value Theorem & Steady State Error

在这里插入图片描述
上述稳态误差的求解用到了分式分解法和拉普拉斯逆变换,整个过程比较复杂,尤其是针对高阶的系统,计算量会非常大。为了快速得到系统的稳态值,本节将引入终值定理(Final Value Theorem,FVT)。这一定理将时间趋于无穷时的时域表达与复数域之间联系起来。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5. 比例积分控制器Proportional-Intefral Controller

消除稳态误差——设计新的控制器

5.1 积分控制

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
说明在引入积分控制器之后,原始的一阶系统变成了二阶系统,上式对应了二阶系统的阶跃响应。类比二阶系统的一般形式,得到此二阶系统的阻尼比 ζ ζ ζ,和固有频率 w n w_n wn
{ 2 ζ w n = a w n 2 = a K I ⇒ { ζ = a 2 a K I w n = a K I \begin{cases} 2\zeta w_{\mathrm{n}}=a\\ {w_{\mathrm{n}}}^2=aK_{\mathrm{I}}\\ \end{cases}\Rightarrow \begin{cases} \zeta =\frac{a}{2\sqrt{aK_{\mathrm{I}}}}\\ w_{\mathrm{n}}=\sqrt{aK_{\mathrm{I}}}\\ \end{cases} { 2ζwn=awn2=aKI{ ζ=2aKI<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

LiongLoure

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值