Dr_Can自动控制理论学习

本文部分素材来自Dr_Can的B站教程,请支持原作者。DR_CAN的个人空间-DR_CAN个人主页-哔哩哔哩视频 (bilibili.com)

1.系统稳定性

三种稳定情况,一共分为不稳定、临界稳定和稳定三种状态,不稳定在输入情况下输出不确定范围跳动,临界稳定输入在限定范围内,输出在规定的范围内波动,图中举例为平衡车,身体前倾看作有界的输入,平衡车跟随输入有界输出,超出范围后系统失去稳定性,稳定系统在时间为无穷大时,最终的结果都会趋于稳定。

2.闭环传递函数

(V(s)-X(s) H(s))(D(s) G(s))=X(s)

最后化简

X(s)=\frac{V(s)D(s) G(s)}{1+H(s)D(s) G(s))}

再变成传递函数的形式

\frac{X(s)}{V(s)}=\frac{D(s) G(s)}{1+H(s)D(s) G(s))}

最终的设计重点变为控制器D(s)的稳定性设计和误差分析,实际是把该闭环系统视为“开环系统”,该系统传递函数为G(s)_{cl}=\frac{X(s)}{V(s)}=\frac{D(s) G(s)}{1+H(s)D(s) G(s))},研究G(s)_{cl}是否稳定。

此时开环系统与闭环系统输入为单位脉冲U(s)R(s),其拉普拉斯变换后值为1,故追求稳定性的的问题就却决于G(s)_{cl}是否收敛。

 将得到的传递函数因式分解可以得到如上形式,进行拉普拉斯变换,拉普拉斯变换常用公式如下

L\left[1\right]=\frac1s \\ L\left[e^{at}\right]=\frac1{s-a} \\ L\left[t^{n}e^{at}\right]=\frac{\Gamma(n+1)}{\left(s-a\right)^{n+1}}\{n>-1\} \\ L\left[t^n\right]=\frac{\Gamma(n+1)}{s^{n+1}}\{n>-1\} \\ L\left[\sin at\right]=\frac a{s^2+a^2} \\ L\left[\cos at\right]=\frac s{s^2+a^2} \\ L\left[\sin\text{h}at\right]=\frac{a}{s^2-a^2} \\ L\left[\cos\text{h}at\right]=\frac s{s^2-a^2} \\ L\left[t\sin at\right]=\frac{2as}{\left(s^2+a^2\right)^2} \\ L\left[t\cos at\right]=\frac{s^2-a^2}{\left(s^2+a^2\right)^2}

可知例1传递函数可以分解为第二种形式,极点值为-3和2,e^{-3t}随时间变化逐渐到,e^{2t}随时间增大逐渐增大,t\rightarrow \infty ,e^{2t}\rightarrow \infty,可知t\rightarrow \infty , e^{2t}+e^{-3t}\rightarrow \infty

同理,该系统为逐渐稳定的。

实部的正负影响着系统的稳定性,实部为正系统不稳定随时间增加逐渐发散,实部为负系统逐渐稳定,实部为0,系统震荡不稳定。

3.控制器D(s)研究

(1)比例控制器

下图为肥胖问题的传递函数图,只使用比例控制器控制,R为摄入量,M为体重,D为扰动项。

[k_{p}(k-m)+D]\frac{1}{7000s+10\alpha}=M

m{(t)}=C_{1}e^{0 t}+C_{2}e^{\frac{-10\alpha-k_{p}}{7000}t}

最终m{(t)}稳定与否取决于第二项C_{2}e^{\frac{-10\alpha-k_{p}}{7000}t}t\rightarrow \infty时的值,这就用到了下面的结论,要求-10\alpha-k_{p}<0

满足上述条件时m{(t)}才有可能实现稳定。

 Dr_CAN留问题Kp=-5,含义是什么。

一位同学回答比较好,在此贴出

这个模型里是不是可以把这个Kp看成一个“决心因子”或者“自控因子”,Kp越大,表示你减小差距的愿望越强烈,采取的行动越多。根据系统的根我们知道Kp+10α两个参数共同影响着体重的输出结果。于是当你的决心Kp在代谢率系数10α的承受范围内,即Kp>-13时,体重总是可控的,而且愿望越强烈,就能越快达到目标。
Kp>0说明你比较节制,只要体重超过预期,就会采取行动减肥;
Kp=0说明you just dont care,不会因为体重和预期有差距而产生任何行动,任由干扰项身体代谢率 do the job,
Kp<0(比如-5)说明你就算体重超过预期仍然快乐养膘,这时只要你的快乐程度没有战胜基础代谢率(系统自身的稳定性储备),那么体重虽然慢但仍然早晚可以依靠自然代谢率降下来。但是如果你看到自己越胖约开心,主观上加大力度继续变胖,自控因子Kp<-13,身体代谢率也救不了你的时候,你的体重就会疯狂爆炸。

总结:Kp正负决定着反馈的正负,超出限定值系统失去稳定性,(系统自身的稳定性储备)<输入反馈。

(2)积分控制器

但这也引入了一个问题,使用比例控制器控制系统,一直会存在一个稳态误差。

 比例项稳态误差分析

输出值为

 \begin{array}{rcl}{X{(s)}}&{=}&{​{\frac{k_{p}\frac{r}{s}}{as+1+k_{p}}}}\\\end{array}

FVT(终值定理)

\lim_ {t\rightarrow\infty}\chi_{(t)}=\lim_{s\rightarrow0}sX(s)=\frac{k_{p}}{1+k_{p}}r

可知最终稳定值为\frac{k_{p}}{1+k_{p}}r,假设R(s)为定值将指定值与最终稳态值做差可知稳态误差为

{E_{s}}=r-\frac{k\rho}{1+k\rho}r=\frac{1}{1+k\rho}r

根据此公式可知,Kp越大稳态误差越小,但可能导致超调,且不论多大都存在误差值。

重新设计控制器

\begin{array}{rcl}{X{(s)}}&{=}&{​{\frac{C_{(s)}\frac{r}{s}}{as+1+C_{(s)}}}}\\\end{array}

FVT(终值定理)

\lim_ {t\rightarrow\infty}\chi_{(t)}=\lim_{s\rightarrow0}sX(s)=\frac{C_{(s)}}{1+C_{(s)}}r

实际上

\lim_ {t\rightarrow\infty}\chi_{(t)}=\lim_{s\rightarrow0}sX(s)=\frac{C_{(s)}}{1+C_{(s)}}r=\lim_{s\rightarrow0}{\frac{1+C_{(s)}-1}{1+C_{(s)}}r}

=r-\frac{1}{1+C_{(s)}}

{E_{s}}=r-r+\frac{1}{1+C_{(s)}}=\frac{1}{1+C_{(s)}}

若要{E_{s}}=0,那么\lim_{s\rightarrow0}{C{(s)}}=\infty

可以得到

{C{(s)}}=\frac{k_{i}}{s}

 此时,控制器C(s)完美解决了稳态误差,但是使其变成了二阶系统,存在超调

X{(s)}=\frac{k_{i}r}{as^{2}+s+k_{i}}

但是比例与积分环节串联,使得

{C{(s)}}=k_p+\frac{k_{i}}{s}

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值