地外水平/斜面的太阳理论辐照度计算及其python实现

本文介绍了如何使用Python计算地外水平/斜面的太阳理论辐照度,包括水平理论的公式解析,以及针对任意斜面的详细代码实现。通过步骤详解和真太阳时转换,提供了计算实例和关键函数的测试用例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

地外水平/斜面的太阳理论辐照度计算及其python实现

引入

最近项目需要计算地外水平/斜面太阳理论辐照度,为此搜集了资料,并在python中进行了实现,现将其分享于此。

水平理论辐照度

地球与太阳之间的相对运动,即地球自转与公转,会对理论辐照度产生影响。在忽略极移和地轴进动微小影响的条件下地球大气层上界单位面积、单位时间接收的太阳辐射与日地距离的平方成反比。地球自转对应太阳时角和太阳高度角的变化,公转对应太阳赤纬和日地距离的变化。

水平太阳辐照度的计算公式为:

水平太阳辐照度
在这里插入图片描述
在这里插入图片描述
在计算某地太阳福射时采用的是当地的真太阳时,所以需要根据当地的区时和经度来求取对应的真太阳时和太阳时角,此求取过程分步完成:①根据当地经度对已知的当地区时进行修正得到当地的地方时;②根据真太阳时和平太阳时之间的时差对该地方时进行修正得到当地的真太阳时;③根据当地的真太阳时计算得到当地区时对应的太阳时角。
在这里插入图片描述
按照上式,可计算得到指定地点、指定日期的水平地外辐照度理论值,并绘制对应的地外辐照度理论值曲线。

任意斜面的太阳辐照度

在这里插入图片描述

代码

python代码如下,略长,主要牵扯到真太阳时转换数组的赋值。
代码最后有运行示例。

import pandas as pd
import numpy as np
import math
from datetime import datetime, timedelta


def calculate_sun_time(time_str, latitude, longitude, tilt, azimuth, longitude_time):
    """从datetime类型的时间计算日出日落及白天时间"""
    cur_time = datetime.strptime(time_str, '%Y-%m-%d %H:%M:%S')
    day_year = int(datetime.strftime(cur_time, '%j'))  # j是积日

    delta = 23.45 / 180 * math.pi * math.sin(2 * math.pi * (284 + day_year) / 365)  # 计算太阳赤纬(弧度)
    latitude = latitude / 180 * math.pi     # 纬度转换为弧度
    cos_omega = - math.sin(delta) * math.sin(latitude) / (math.cos(delta) * math.cos(latitude))
    omega = math.acos(cos_omega)            # 计算真太阳时时角

    true_time_down = (omega * 180 / math.pi / 15 + 12) * 60   # 计算基于真太阳时的日落时间
    true_time_up = 60 * 24 - true_time_down
    time_sun = (true_time_down - 12 * 60) * 2

    # 计算偏差时间
    bias_time = dif_true_solar_time(day_year).split(':')
    if '-' in bias_time[0]:
        pos_flag = -1
    else:
        pos_flag = 1
    bias_minute = int(bias_time[0])
    bias_second = int(bias_time[1])
    bias = pos_flag * (abs(bias_minute) + bias_second / 60)

    minute_sun_down = true_time_down - bias - 4 * (longitude - longitude_time)
    minute_sun_up = true_time_up - bias - 4 * (longitude - longitude_time)

    return time_sun, minute_sun_up, minute_sun_down


def calculate_irradiance_base(day_year, minute_day, latitude, longitude, tilt, azimuth, longitude_time):
    """
    根据给定的日期与时间,计算当前位置的大气外理论辐照度,只适用于南北回归线之外的情况,假定电站方位角为0
    北纬为正,东经为正
    latitude:电站所在维度
    longitude:电站所在经度
    tilt:电站光伏板安装角度
    azimuth:电站斜面方位角
    longitude_time:电站所采用时区的中心经度
    """
    G_0 = 1368  # 取太阳常数为1368(W/m2)
    k = 1 + 0.034 * (math.cos(2 * math.pi / 365 * day_year))        # 计算日地距离修正系数
    delta = 23.45 / 180 * math.pi * math.sin(2 * math.pi * (284 + day_year) / 365)    # 计算太阳赤纬(弧度)

    # 计算偏差时间
    bias_time = dif_true_solar_time(day_year).split(':')
    if '-' in bias_time[0]:
        pos_flag = -1
    else:
        pos_flag = 1
    bias_minute = int(bias_time[0])
    bias_second = int(bias_time[1])
    bias = pos_flag * (abs(bias_minute) + bias_second / 60)

    true_time = minute_day + 4 * (longitude - longitude_time) + bias     # 计算真太阳时
    omega = (true_time / 60 - 12) * 15 / 180 * math.pi      # 计算太阳时角(弧度)
    latitude = latitude / 180 * math.pi                     # 纬度转换为弧度

    # theta为天顶角
    cos_theta = math.sin(delta)*math.sin(latitude) + math.cos(delta)*math.cos(latitude)*math.cos(omega)
    h = math.pi / 2 - math.acos(cos_theta)  # 太阳高度角
    # 当天顶角cos<=0时,认为无光
    # if cos_theta <= 0:
    #     G = 0
    if tilt != 0:
        tilt = tilt / 180 * math.pi
        azimuth = azimuth / 180 * math.pi
        cos_alpha = (math.sin(h) * math.sin(latitude) - math.sin(delta)) / (math.cos(h) * math.cos(latitude))
        alpha = math.acos(cos_alpha)    # 计算太阳方位角
        # 不用sin的原因是,asin无法分辨alpha大于90°的情况
        # sin_alpha = -math.cos(delta) * math.sin(omega) / math.cos(h)
        # if sin_alpha > 1:
        #     sin_alpha = (math.sin(h) * math.sin(latitude) - math.sin(delta)) / (math.cos(h) * math.cos(latitude))
        # alpha = math.asin(sin_alpha)    # 计算太阳方位角
        if true_time > 60 * 12:         # 使下午的太阳方位角正常
            alpha = -alpha
        # 计算对于斜面的太阳入射角
        cos_i = math.cos(tilt) * math.sin(h) + math.sin(tilt) * math.cos(h) * math.cos(alpha - azimuth)
        G = k * G_0 * cos_i
    else:
        G = k * G_0 * cos_theta
    if G < 0:
        G = 0
    return G


def calculate_irradiance(time_str, latitude, longitude, tilt, azimuth, longitude_time):
    """从datetime类型的时间计算当前大气外理论辐照度"""
    cur_time = datetime.strptime(time_str, '%Y-%m-%d %H:%M:%S')

    day_year = int(datetime.strftime(cur_time, '%j'))   # j是积日

    hour = int(datetime.strftime(cur_time, "%H"))
    minute = int(datetime.strftime(cur_time, "%M"))
    minute_day = 60 * hour + minute                     # 计算当前时刻的日分钟数

    return calculate_irradiance_base(day_year, minute_day, latitude, longitude, tilt, azimuth, longitude_time)


def dif_true_solar_time(day_year):
    sun_array = list(range(0, 366))
    # <editor-fold desc="真平太阳时差的赋值">
    sun_array[0] = "-3:9"
    sun_array[1] = "-3:38"
    sun_array[2] = "-4:6"
    sun_array[3] = "-4:33"
    sun_array[4] = "-5:1"
    sun_array[5] = "-5:27"
    sun_array[6] = "-5:54"
    sun_array[7] = "-6:20"
    sun_array[8] = "-6:45"
    sun_array[9] = "-7:10"
    sun_array[10] = "-7:35"
    sun_array[11] = "-7:59"
    sun_array[12] = "-8:22"
    sun_array[13] = "-8:45"
    sun_array[14] = "-9:7"
    sun_array[15] = "-9:28"
    sun_array[16] = "-9:49"
    sun_array[17] = "-10:9"
    sun_array[18] = "-10:28"
    sun_array[19] = "-10:47"
    sun_array[20] = "-11:5"
    sun_array[21] = "-11:22"
    sun_array[22] = "-11:38"
    sun_array[23] = "-11:54"
    sun_array[24] = "-12:8"
    sun_array[25] = "-12:22"
    sun_array[26] = "-12:35"
    sun_array[27] = "-12:59"
    sun_array[28] = "-13:10"
    sun_array[29] = "-13:19"
    sun_array[30] = "-13:37"
    sun_array[31] = "-13:44"
    sun_array[32] = "-13:50"
    sun_array[33] = "-13:56"
    sun_array[34] = "-14:1"
    sun_array[35] = "-14:5"
    sun_array[36] = "-14:9"
    sun_array[37] = "-14:11"
    sun_array[38] = "-14:13"
    sun_array[39] = "-14:14"
    sun_array[40] = "-14:15"
    sun_array[41] = "-14:14"
    sun_array[42] = "-14:13"
    sun_array[43] = "-14:11"
    sun_array[44] = "-14:8"
    sun_array[45] = "-14:5"
    sun_array[46] = "-14:1"
    sun_array[47] = "-13:56"
    sun_array[48] = "-13:51"
    sun_array[49] = "-13:44"
    sun_array[50] = "-13:38"
    sun_array[51] = "-13:30"
    sun_array[52] = "-13:22"
    sun_array[53] = "-13:13"
    sun_array[54] = "-11:4"
    sun_array[55] = "-12:54"
    sun_array[56] = "-12:43"
    sun_array[57] = "-12:32"
    sun_array[58] = "-12:21"
    sun_array[59] = "-12:8"
    sun_array[60] = "-11:56"
    sun_array[61] = "-11:43"
    sun_array[62] = "-11:29"
    sun_array[63] = "-11:15"
    sun_array[64] = "-11:1"
    sun_array[65] = "-10:47"
    sun_array[66] = "-10:32"
    sun_array[67] = "-10:16"
    sun_array[68] = "-10:1"
    sun_array[69] = "-9:45"
    sun_array[70] = "-9:28"
    sun_array[71] = "-9:12"
    sun_array[72] = "-8:55"
    sun_array[73] = "-8:38"
    sun_array[74] = "-8:21"
    sun_array[75] = "-8:4"
    sun_array[76] = "-7:46"
    sun_array[77] = "-7:29"
    sun_array[78] = "-7:11"
    sun_array[79] = "-6:53"
    sun_array[80] = "-6:35"
    sun_array[81] = "-6:17"
    sun_array[82] = "-5:58"
    sun_array[83] = "-5:40"
    sun_array[84] = "-5:22"
    sun_array[85] = "-5:4"
    sun_array[86] = "-4:45"
    sun_array[87] = "-4:27"
    sun_array[88] = "-4:9"
    sun_array[89] = "-3:51"
    sun_array[90] = "-3:33"
    sun_array[91] = "-3:16"
    sun_array[92] = "-2:58"
    sun_array[93] = "-2:41"
    sun_array[94] = "-2:24"
    sun_array[95] = "-2:7"
    sun_array[96] = "-1:50"
    sun_array[97] = "-1:33"
    sun_array[98] = "-1:17"
    sun_array[99] = "-1:1"
    sun_array[100] = "0:46"
    sun_array[101] = "0:30"
    sun_array[102] = "0:16"
    sun_array[103] = "0:1"
    sun_array[104] = "0:13"
    sun_array[105] = "0:27"
    sun_array[106] = "0:41"
    sun_array[107] = "0:54"
    sun_array[108] = "1:6"
    sun_array[109] = "1:19"
    sun_array[110] = "1:31"
    sun_array[111] = "1:42"
    sun_array[112] = "1:53"
    sun_array[113] = "2:4"
    sun_array[114] = "2:14"
    sun_array[115] = "2:23"
    sun_array[116] = "2:33"
    sun_array[117] = "2:41"
    sun_array[118] = "2:49"
    sun_array[119] = "2:57"
    sun_array[120] = "3:4"
    sun_array[121] = "1:10"
    sun_array[122] = "3:16"
    sun_array[123] = "3:21"
    sun_array[124] = "3:26"
    sun_array[125] = "3:30"
    sun_array[126] = "3:37"
    sun_array[127] = "3:36"
    sun_array[128] = "3:39"
    sun_array[129] = "3:40"
    sun_array[130] = "3:42"
    sun_array[131] = "3:42"
    sun_array[132] = "3:42"
    sun_array[133] = "3:42"
    sun_array[134] = "3:41"
    sun_array[135] = "3:39"
    sun_array[136] = "3:37"
    sun_array[137] = "3:34"
    sun_array[138] = "3:31"
    sun_array[139] = "3:27"
    sun_array[140] = "3:23"
    sun_array[141] = "3:18"
    sun_array[142] = "3:13"
    sun_array[143] = "3:7"
    sun_array[144] = "3:1"
    sun_array[145] = "2:54"
    sun_array[146] = "2:47"
    sun_array[147] = "2:39"
    sun_array[148] = "2:31"
    sun_array[149] = "2:22"
    sun_array[150] = "2:13"
    sun_array[151] = "2:4"
    sun_array[152] = "1:54"
    sun_array[153] = "1:44"
    sun_array[154] = "1:34"
    sun_array[155] = "1:23"
    sun_array[156] = "1:12"
    sun_array[157] = "1:0"
    sun_array[158] = "0:48"
    sun_array[159] = "0:36"
    sun_array[160] = "0:24"
    sun_array[161] = "0:12"
    sun_array[162] = "0:1"
    sun_array[163] = "0:14"
    sun_array[164] = "0:39"
    sun_array[165] = "0:52"
    sun_array[166] = "1:5"
    sun_array[167] = "1:18"
    sun_array[168] = "1:31"
    sun_array[169] = "1:45"
    sun_array[170] = "1:57"
    sun_array[171] = "2:10"
    sun_array[172] = "2:23"
    sun_array[173] = "2:36"
    sun_array[174] = "2:48"
    sun_array[175] = "3:1"
    sun_array[176] = "3:13"
    sun_array[177] = "3:25"
    sun_array[178] = "3:37"
    sun_array[179] = "3:49"
    sun_array[180] = "4:0"
    sun_array[181] = "4:11"
    sun_array[182] = "4:22"
    sun_array[183] = "4:33"
    sun_array[184] = "4:43"
    sun_array[185] = "4:53"
    sun_array[186] = "5:2"
    sun_array[187] = "5:11"
    sun_array[188] = "5:20"
    sun_array[189] = "5:28"
    sun_array[190] = "5:36"
    sun_array[191] = "5:43"
    sun_array[192] = "5:50"
    sun_array[193] = "5:56"
    sun_array[194] = "6:2"
    sun_array[195] = "6:8"
    sun_array[196] = "6:12"
    sun_array[197] = "6:16"
    sun_array[198] = "6:20"
    sun_array[199] = "6:23"
    sun_array[200] = "6:25"
    sun_array[201] = "6:27"
    sun_array[202] = "6:29"
    sun_array[203] = "6:29"
    sun_array[204] = "6:29"
    sun_array[205] = "6:29"
    sun_array[206] = "6:28"
    sun_array[207] = "6:26"
    sun_array[208] = "6:24"
    sun_array[209] = "6:21"
    sun_array[210] = "6:17"
    sun_array[211] = "6:13"
    sun_array[212] = "6:8"
    sun_array[213] = "6:3"
    sun_array[214] = "5:57"
    sun_array[215] = "5:51"
    sun_array[216] = "5:44"
    sun_array[217] = "5:36"
    sun_array[218] = "5:28"
    sun_array[219] = "5:19"
    sun_array[220] = "5:10"
    sun_array[221] = "5:0"
    sun_array[222] = "4:50"
    sun_array[223] = "4:39"
    sun_array[224] = "4:27"
    sun_array[225] = "4:15"
    sun_array[226] = "4:2"
    sun_array[227] = "3:49"
    sun_array[228] = "3:36"
    sun_array[229] = "3:21"
    sun_array[230] = "3:7"
    sun_array[231] = "2:51"
    sun_array[232] = "2:36"
    sun_array[233] = "2:20"
    sun_array[234] = "2:3"
    sun_array[235] = "1:47"
    sun_array[236] = "1:29"
    sun_array[237] = "1:12"
    sun_array[238] = "0:54"
    sun_array[239] = "0:35"
    sun_array[240] = "0:17"
    sun_array[241] = "0:2"
    sun_array[242] = "0:21"
    sun_array[243] = "0:41"
    sun_array[244] = "1:0"
    sun_array[245] = "1:20"
    sun_array[246] = "1:40"
    sun_array[247] = "2:1"
    sun_array[248] = "2:21"
    sun_array[249] = "2:42"
    sun_array[250] = "3:3"
    sun_array[251] = "3:3"
    sun_array[252] = "3:24"
    sun_array[253] = "3:45"
    sun_array[254] = "4:6"
    sun_array[255] = "4:27"
    sun_array[256] = "4:48"
    sun_array[257] = "5:10"
    sun_array[258] = "5:31"
    sun_array[259] = "5:53"
    sun_array[260] = "6:14"
    sun_array[261] = "6:35"
    sun_array[262] = "6:57"
    sun_array[263] = "7:18"
    sun_array[264] = "7:39"
    sun_array[265] = "8:0"
    sun_array[266] = "8:21"
    sun_array[267] = "8:42"
    sun_array[268] = "9:2"
    sun_array[269] = "9:22"
    sun_array[270] = "9:42"
    sun_array[271] = "10:2"
    sun_array[272] = "10:21"
    sun_array[273] = "10:40"
    sun_array[274] = "+10:59"
    sun_array[275] = "+11:18"
    sun_array[276] = "+11:36"
    sun_array[277] = "+11:36"
    sun_array[278] = "+11:53"
    sun_array[279] = "+12:11"
    sun_array[280] = "+12:28"
    sun_array[281] = "+12:44"
    sun_array[282] = "+12:60"
    sun_array[283] = "+13:16"
    sun_array[284] = "+13:16"
    sun_array[285] = "+13:31"
    sun_array[286] = "+13:45"
    sun_array[287] = "+13:59"
    sun_array[288] = "+14:13"
    sun_array[289] = "+14:26"
    sun_array[290] = "+14:38"
    sun_array[291] = "+14:50"
    sun_array[292] = "+15:1"
    sun_array[293] = "+15:12"
    sun_array[294] = "+11:21"
    sun_array[295] = "+15:31"
    sun_array[296] = "+15:40"
    sun_array[297] = "+15:48"
    sun_array[298] = "+15:55"
    sun_array[299] = "+16:1"
    sun_array[300] = "+16:7"
    sun_array[301] = "+16:12"
    sun_array[302] = "+16:16"
    sun_array[303] = "+16:20"
    sun_array[304] = "+16:22"
    sun_array[305] = "+16:24"
    sun_array[306] = "+16:25"
    sun_array[307] = "+16:25"
    sun_array[308] = "+16:24"
    sun_array[309] = "+16:23"
    sun_array[310] = "+16:21"
    sun_array[311] = "+16:17"
    sun_array[312] = "+16:13"
    sun_array[313] = "+16:9"
    sun_array[314] = "+16:3"
    sun_array[315] = "+15:56"
    sun_array[316] = "+15:49"
    sun_array[317] = "+15:41"
    sun_array[318] = "+15:32"
    sun_array[319] = "+15:22"
    sun_array[320] = "+15:11"
    sun_array[321] = "+14:60"
    sun_array[322] = "+14:47"
    sun_array[323] = "+14:34"
    sun_array[324] = "+14:20"
    sun_array[325] = "+14:6"
    sun_array[326] = "+13:50"
    sun_array[327] = "+13:34"
    sun_array[328] = "+13:17"
    sun_array[329] = "+12:59"
    sun_array[330] = "+12:40"
    sun_array[331] = "+12:21"
    sun_array[332] = "+12:1"
    sun_array[333] = "+11:40"
    sun_array[334] = "+11:18"
    sun_array[335] = "+10:56"
    sun_array[336] = "+10:33"
    sun_array[337] = "+10:9"
    sun_array[338] = "+9:45"
    sun_array[339] = "+9:21"
    sun_array[340] = "+8:55"
    sun_array[341] = "+8:29"
    sun_array[342] = "+8:3"
    sun_array[343] = "+7:36"
    sun_array[344] = "+7:9"
    sun_array[345] = "+6:42"
    sun_array[346] = "+6:14"
    sun_array[347] = "+5:46"
    sun_array[348] = "+5:17"
    sun_array[349] = "+4:48"
    sun_array[350] = "+4:19"
    sun_array[351] = "+3:50"
    sun_array[352] = "+3:21"
    sun_array[353] = "+2:51"
    sun_array[354] = "+2:22"
    sun_array[355] = "+1:52"
    sun_array[356] = "+1:22"
    sun_array[357] = "+0:52"
    sun_array[358] = "+0:23"
    sun_array[359] = "+0:7"
    sun_array[360] = "+0:37"
    sun_array[361] = "-1:6"
    sun_array[362] = "-1:36"
    sun_array[363] = "-2:5"
    sun_array[364] = "-2:34"
    sun_array[365] = "-3:3"
    # </editor-fold>
    return sun_array[day_year - 1]

# # 函数测试
# # Latitude 39.1319° [°N], Longitude -77.2141° [°E], Elevation 138 m [m])
tilt = 20

pd_data = pd.DataFrame(np.arange(1, 60*24+1, 30), columns=['minute_day'])
pd_data['day_year'] = 142
pd_data['G'] = pd_data.apply(lambda x: calculate_irradiance_base(int(x['day_year']), x['minute_day'], 40, 110, 0, 0, 120), axis=1)
pd_data['tilt_G'] = pd_data.apply(lambda x: calculate_irradiance_base(int(x['day_year']), x['minute_day'], 40, 110, tilt, 0, 120), axis=1)

print(pd_data)

time_str = '2008-06-23 14:35:22'
G = calculate_irradiance(time_str, 30, 122, tilt, 0, 120)
print(G)

[time_sun, minute_sun_up, minute_sun_down] = calculate_sun_time(time_str, 30, 122, tilt, 0, 120)
print(G)

参考:
[1] https://wenku.baidu.com/view/0989752c3169a4517723a3d8.html
[2] https://www.pveducation.org/zh-hans/pvcdrom/%E4%BB%BB%E6%84%8F%E6%9C%9D%E5%90%91%E5%92%8C%E5%80%BE%E6%96%9C%E5%BA%A6
[3] 王飞, 并网型光伏电站发电功率预测方法与系统, 2013, 华北电力大学.

<think>我们有一个任务:清洗和整理光伏电站数据,按小时处理数据,以支持分析灰尘对发电效率的影响。 数据可能包括:发电量、辐照度(可能分为水平面总辐照度斜面辐照度等)、气象数据(如温度、湿度、风速等)。 步骤: 1. 数据读取:根据引用[2]和[3],数据可能来自不同的来源,格式可能是CSV或NetCDF。我们需要确定数据格式并读取。 2. 数据清洗:处理缺失值和异常值。 3. 时间粒度转换:原始数据可能是15分钟或逐日的,我们需要按小时聚合(或重新采样)。 4. 数据整理:将不同数据源的数据按时间对齐,并计算每小时的平均值(或总和,对于发电量可能是求和,对于气象数据可能是平均)。 5. 输出处理后的数据,以便后续分析。 假设: 我们假设原始数据包含时间戳(timestamp)、发电量(power)、辐照度(irradiance)以及气象数据(如温度temperature、湿度humidity、风速wind_speed等)。 并且,我们假设数据是按时间顺序记录的,但可能存在缺失和异常。 由于具体数据格式未知,我们将编写一个框架程序,并假设数据存储在CSV文件中(如果是NetCDF,则需要使用xarray或netCDF4库)。 步骤详细说明: 1. 读取数据:使用pandas读取CSV文件,并解析时间列。 2. 数据清洗: - 缺失值处理:可以删除、填充(例如用前后值的平均值、线性插值等)。这里需要根据数据特点选择。 - 异常值处理:可以通过设定上下限(比如物理可能的范围)来识别并处理(设为缺失或修正)。 3. 重采样:将数据按小时重采样。对于发电量,我们可能每小时求和(因为发电量是累积量?但通常功率是瞬时值,所以如果是功率则取平均;如果是发电量则取该小时内的总和)。注意:原始数据可能是功率(单位时间内的发电量),所以按小时重采样时,如果原始是15分钟功率(kW),则每小时平均功率就是该小时内的平均值,而每小时发电量(kWh)则是4个15分钟功率值乘以0.25小时(即15分钟)再求和。但题目要求按小时处理,我们这里假设原始数据是功率(kW)和气象数据(瞬时值),那么按小时重采样时: - 功率:取该小时内的平均值,得到平均功率(kW),然后乘以1小时就是该小时发电量(kWh)?但注意,如果原始数据已经是发电量(kWh)在15分钟内产生的,那么我们需要将15分钟的发电量累加得到小时发电量。所以,我们需要明确原始数据的含义。 - 辐照度:通常取平均值(因为辐照度是瞬时强度,但通常记录的是累计值?实际上,辐照度(W/m²)是瞬时值,所以取平均。如果原始数据是累计辐照量(J/m²)在15分钟内的累计,那么需要先转换为平均辐照度(W/m²)再取平均?或者直接累加再除以时间?这里比较复杂,我们假设原始数据是瞬时值,所以按小时取平均。 - 气象数据:温度、湿度、风速等取小时内的平均值。 4. 由于我们要分析灰尘影响,可能需要考虑长时间序列,所以灰尘的影响可能表现为发电效率的逐渐下降(在相同气象条件下)。因此,我们需要将清洗后的数据按小时对齐,并保存。 程序结构: - 读取多个CSV文件(发电量、辐照度、气象数据)?或者一个文件包含所有数据? - 假设我们有一个包含所有必要列的数据文件。 由于没有具体数据,我们假设数据文件为:'pv_data.csv',包含列: timestamp: 时间戳(格式如:'2024-01-01 00:00:00') power: 瞬时功率(kW) irradiance: 辐照度(W/m²) temperature: 温度(℃) humidity: 湿度(%) wind_speed: 风速(m/s) 如果原始数据是15分钟间隔,那么每小时有4个数据点。 步骤: 1. 读取数据,将时间戳设置为索引。 2. 数据清洗: - 检查缺失值:使用isnull(),然后决定填充还是删除。这里我们使用线性插值填充。 - 异常值:定义合理范围,超出范围的值视为异常,替换为NaN,然后同样用插值填充。 功率:不可能为负,而且最大值受限于电站容量。 辐照度:0~1500 W/m²(假设,最大值可能超过1000,但1500是一个安全上限) 温度:根据当地气候设定范围,比如-20~50℃ 湿度:0~100% 风速:0~60 m/s(根据实际情况调整) 3. 重采样:按小时重采样,取平均值(因为都是瞬时值)。注意:如果原始数据是累计量,则需要不同的处理,这里按瞬时值处理。 4. 输出清洗后的数据到新的CSV文件。 但是,我们也要考虑灰尘分析需要长时间的数据(比如几个月或一年),因此程序应该能够处理较长时间跨度的数据。 另,灰尘的影响可能通过比较清洁状态和灰尘积累状态下的性能比(PR)来分析。但这不是本程序的任务,本程序只负责数据清洗和按小时整理。 程序代码:</think>### 光伏数据清洗与处理程序开发指南 我将为您设计一个完整的Python程序,用于清洗和整理光伏电站数据,重点处理发电量、辐照度和气象数据,并按小时粒度处理数据。以下是分步解决方案: #### 1. 程序结构与功能设计 ```python import pandas as pd import numpy as np from datetime import datetime, timedelta class PVDataProcessor: def __init__(self, power_file, irradiance_file, weather_file): """ 初始化数据处理器 :param power_file: 发电量数据文件路径 :param irradiance_file: 辐照度数据文件路径 :param weather_file: 气象数据文件路径 """ self.power_df = self.load_data(power_file, 'power') self.irrad_df = self.load_data(irradiance_file, 'irradiance') self.weather_df = self.load_data(weather_file, 'weather') def load_data(self, file_path, data_type): """加载不同来源的数据并进行初步处理""" # 根据文件扩展名选择读取方式 if file_path.endswith('.csv'): df = pd.read_csv(file_path) elif file_path.endswith('.nc'): df = xr.open_dataset(file_path).to_dataframe() # 统一时间戳格式 df['timestamp'] = pd.to_datetime(df['timestamp']) df.set_index('timestamp', inplace=True) # 数据类型特定处理 if data_type == 'power': df.rename(columns={'generation_kwh': 'power'}, inplace=True) elif data_type == 'irradiance': df.rename(columns={'ghi': 'irradiance'}, inplace=True) elif data_type == 'weather': # 保留关键气象参数 df = df[['temperature', 'humidity', 'wind_speed', 'precipitation']] return df def handle_missing_values(self, df, max_gap='1H'): """ 处理缺失值和异常值 :param max_gap: 最大允许插值间隔 """ # 异常值处理(基于物理范围) if 'power' in df.columns: df['power'] = df['power'].clip(lower=0, upper=10000) # 根据实际电站容量调整 if 'irradiance' in df.columns: df['irradiance'] = df['irradiance'].clip(lower=0, upper=1500) # 缺失值处理 df = df.interpolate(method='time', limit_area='inside') # 处理较大间隔的缺失值 df = df.asfreq('15T') # 确保15分钟间隔 return df def resample_to_hourly(self): """将所有数据集按小时粒度重采样""" # 发电量:每小时总和(kWh) power_hourly = self.power_df.resample('H').sum() # 辐照度和气象数据:每小时平均值 irrad_hourly = self.irrad_df.resample('H').mean() weather_hourly = self.weather_df.resample('H').mean() # 合并数据集 merged_df = pd.concat([power_hourly, irrad_hourly, weather_hourly], axis=1) return merged_df.dropna() def calculate_efficiency(self, df): """计算发电效率(考虑灰尘影响的关键指标)""" # PR = 实际发电量 / (组件面积 × 转换效率 × 辐照量) # 假设参数(需根据实际情况调整) PANEL_AREA = 1000 # m² CONV_EFFICIENCY = 0.18 # 18%转换效率 df['expected_power'] = PANEL_AREA * CONV_EFFICIENCY * df['irradiance'] / 1000 df['efficiency'] = df['power'] / df['expected_power'] return df def process_pipeline(self, output_file): """完整处理流程""" print("开始数据清洗...") self.power_df = self.handle_missing_values(self.power_df) self.irrad_df = self.handle_missing_values(self.irrad_df) self.weather_df = self.handle_missing_values(self.weather_df) print("按小时粒度处理数据...") hourly_data = self.resample_to_hourly() print("计算发电效率...") result_df = self.calculate_efficiency(hourly_data) print(f"保存结果到 {output_file}") result_df.to_csv(output_file) return result_df # 使用示例 if __name__ == "__main__": processor = PVDataProcessor( power_file='plant_power.csv', irradiance_file='irradiance_data.nc', weather_file='weather_conditions.csv' ) processed_data = processor.process_pipeline('hourly_pv_data.csv') ``` #### 2. 关键处理技术说明 1. **数据清洗策略**: - 异常值处理:基于物理可行范围 - 功率:$0 \leq P \leq P_{\text{max}}$($P_{\text{max}}$为电站容量) - 辐照度:$0 \leq I \leq 1500\text{W/m}^2$ - 温度:$-20^\circ\text{C} \leq T \leq 50^\circ\text{C}$ - 缺失值处理:时间序列插值(最大允许间隔1小时) $$ x_t = x_{t-1} + \frac{(x_{t+n} - x_{t-1})}{n+1} \quad \text{(线性插值)} $$ 2. **时间粒度转换**: - 发电量:每小时总和($\sum_{i=1}^{4} P_i \times 0.25\text{h}$) - 辐照度/气象:每小时平均值($\frac{1}{4}\sum_{i=1}^{4} I_i$) 3. **灰尘影响分析准备**: - 计算性能比(PR): $$ \text{PR} = \frac{\text{实际发电量}}{\text{组件面积} \times \eta \times \text{总辐照量}} $$ 其中$\eta$为组件标称效率 #### 3. 数据处理示例(模拟数据) | 时间戳 | 功率(kW) | 辐照度(W/m²) | 温度(℃) | 效率 | |------------------|----------|--------------|---------|------| | 2023-06-01 10:00 | 450.2 | 856.3 | 28.5 | 0.92 | | 2023-06-01 11:00 | 502.1 | 932.7 | 30.1 | 0.89 | | 2023-06-01 12:00 | 620.8 | 1102.5 | 32.8 | 0.91 | #### 4. 灰尘影响分析建议 完成数据处理后,可通过以下方法分析灰尘影响: ```python # 示例分析代码 import seaborn as sns import matplotlib.pyplot as plt def analyze_dust_impact(df): """分析灰尘对发电效率的影响""" # 计算每日平均效率 daily_eff = df['efficiency'].resample('D').mean() # 绘制效率变化趋势 plt.figure(figsize=(12, 6)) daily_eff.plot(title='光伏系统效率变化趋势') plt.ylabel('性能比 (PR)') plt.grid(True) # 识别异常下降(可能由灰尘积累引起) rolling_avg = daily_eff.rolling(window=7).mean() anomalies = daily_eff[daily_eff < rolling_avg - 0.05] print(f"检测到{len(anomalies)}个异常低效日期") return anomalies ``` ### 注意事项 1. **数据质量检查**: - 验证时间戳连续性和时区一致性 - 检查不同数据源的时间对齐(使用`pd.merge_asof`) - 确认辐照度类型(GHI/DNI) 2. **性能优化**: - 大型数据集使用Dask替代Pandas - 启用多线程处理:`resample(..., threaded=True)` - 使用`category`类型存储重复字符串 3. **灰尘分析扩展**: - 结合降雨数据识别自然清洗事件 - 建立效率衰减模型:$\eta_t = \eta_0 e^{-kt}$ - 区分季节性和灰尘影响 此程序为光伏电站数据分析提供了完整的处理框架,特别适合研究灰尘积累对发电效率的影响。实际应用中需根据电站具体参数调整常数和阈值。
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值