K阶子式[1]^{[1]}[1] (Minor)
以3阶行列式为例:
∣a1a2a3b1b2b3c1c2c3∣ \left| \begin{array} {ccc} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3\\ c_1 & c_2 & c_3 \end{array} \right| ∣∣∣∣∣∣a1b1c1a2b2c2a3b3c3∣∣∣∣∣∣
则它的3阶子式是它本身
它的2阶子式有 第1、2行和第1、2列相交处元素组成的行列式
∣a1a2b1b2∣ \left| \begin{array} {cc} a_1 & a_2 \\ b_1 & b_2 \end{array} \right| ∣∣∣∣a1b1a2b2∣∣∣∣
第1、2行和第1、3列相交处元素组成的行列式
∣a1a3b1b3∣
\left|
\begin{array} {cc}
a_1 & a_3 \\
b_1 & b_3 \end{array}
\right|
∣∣∣∣a1b1a3b3∣∣∣∣
等等
方法就是选取kkk行再选取kkk列 可以试着划出2k2k2k条线 然后相交处的元素组成的新的行列式就是 kkk阶子式
K阶主子式 (Primary Minor)
在子式的基础上,要求子式包含的行序数和包含的列序数相同。
顺序主子式[2]^{[2]}[2]
由 1—i 行和 1—i 列所确定的子式即为“n 阶行列式的i 阶顺序主子式”。
例如:
1阶时:取第1行,第1列
2阶时:取第1、2行,第1、2列
3阶时:取第1、2、3行,第1、2、3列
4阶时:取第1、2、3、4行,第1、2、3、4列
实际上,主子式的主对角线元素是原 n 阶行列式的主对角线元素的一部分,且顺序相同。
值得注意的是,根据定义,i 阶主子式是不唯一的,而 i 阶顺序主子式是唯一的。
余子式 & 代数余子式
在nnn阶行列式中,划去元aija_{ij}aij所在的第iii行与第jjj列的元,剩下的元不改变原来的顺序所构成的n−1n-1n−1阶行列式称为元aija_{ij}aij的余子式。
数学表示上计作MijM_{ij}Mij 。
aija_{ij}aij的代数余子式 : Aij=(−1)i+jaijA_{ij}= (-1)^{i+j} a_{ij}Aij=(−1)i+jaij
Reference:
[1] : candyngwh, https://zhidao.baidu.com/question/193409809.html
[2] : https://baike.baidu.com/item/%E4%B8%BB%E5%AD%90%E5%BC%8F/2671796?fr=aladdin
[3]:
https://baike.baidu.com/item/%E4%BD%99%E5%AD%90%E5%BC%8F/1407550?fr=aladdin
图片来自:
Meyer, Carl D. Matrix analysis and applied linear algebra. Vol. 71. Siam, 2000.