多元高斯分布/多元正态分布

这些知识,动不动就忘。为了不白选了一门数学课,还是把他记下来。
f ( x ) = 1 ( 2 π ) n / 2 ∣ C ∣ 1 2 e x p { − 1 2 ( x − μ ) T C − 1 ( x − μ ) } f(x)= \frac{1}{ (2\pi)^{n/2} {|C|}^{\frac{1}{2}}}exp\{ -\frac{1}{2} (x-\mu)^T C^{-1} (x-\mu) \} f(x)=(2π)n/2C211exp{21(xμ)TC1(xμ)},其中 C C C为协方差矩阵,n为数据维度。

对于二元正态分布:
C = [ σ 1 2 ρ σ 1 σ 2 ρ σ 1 σ 2 σ 2 2 ] C= \begin{bmatrix} \sigma_1^2 & \rho\sigma_1\sigma_2 \\ \rho\sigma_1\sigma_2 & \sigma_2^2 \end{bmatrix} C=[σ12ρσ1σ2ρσ1σ2σ22]。其中 σ i \sigma_i σi为第 i i i维数据的方差, ρ \rho ρ为相关系数,所以显然 ρ σ 1 σ 2 \rho\sigma_1\sigma_2 ρσ1σ2为协方差。

二元正态分布:
1 2 π 1 − ρ 2 σ 1 σ 2 e x p { − ( y − μ 2 ) 2 2 σ 2 2 } e x p { − 1 2 ( 1 − ρ 2 ) × ( x − μ 1 σ 1 − ρ y − μ 2 σ 2 ) 2 } \frac{1}{2\pi\sqrt{1-\rho^2}\sigma_1\sigma_2} exp\{-\frac{(y-\mu_2)^2}{2\sigma_2^2}\} exp\{ -\frac{1}{2(1-\rho^2)} \times (\frac{x-\mu_1}{\sigma_1}-\rho\frac{y-\mu_2}{\sigma_2})^2\} 2π1ρ2 σ1σ21exp{2σ22(yμ2)2}exp{2(1ρ2)1×(σ1xμ1ρσ2yμ2)2}

对于多元正态分布,如果各维相互独立,那么 C C C中主对角之外的元素为0,这是因为相关系数都为0。

接下来附上3页草稿,验证二元正态分布的形式和多元正态分布的形式吻合:

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

如果n维正态分布的每一维相互独立,密度函数就是n个1维正态分布的乘积。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值