SENet论文总结

SENet简介

       \space\space\space\space\space\space       一般的卷积神经网络,卷积核会融合局部感受野中空间以及通道方向的信息来产生新特征。通过叠加一系列与非线性层和降采样层交织的卷积层,卷积神经网络能够捕获具有全局感受野的层次模式,作为图像的描述。
       \space\space\space\space\space\space       近来一些方法通过强化对特征图空间相关性的学习来增强网络的表达能力,如Inception结构。这篇文章从不同的角度出发 ,通过SE模块对特征图通道之间的相互依赖关系建模来提高网络的表达能力。为了实现这一点,文章提出了一种允许网络对特征图在通道方向上进行自适应重新校准的机制,通过该机制,网络可以学习根据全局信息有选择地强化有用的特征并抑制不太有用的特征。
       \space\space\space\space\space\space       SE(Squeeze-and-Excitation)模块如下图所示。
在这里插入图片描述
一个特征图 X ∈ R H ′ × W ′ × C ′ X\in\R^{H'\times W'\times C'} XRH×W×C,经过一系列卷积操作 F t r F_{tr} Ftr,得到特征图 U ∈ R H × W × C U\in\R^{H\times W\times C} URH×W×C,然后 U U U进入SE模块:
1、S(Squeeze)操作:对特征图 U U U在空间维度上进行压缩,生成 1 × 1 × C 1\times1\times C 1×1×C的特征向量。即对特征图每个通道 H × W H\times W H×W的空间信息整合为一个实数,这个实数蕴含了对应通道的 H × W H\times W H×W特征图的全局分布信息。这样使得网络浅层也可以利用全局感受野的信息。
2、E(Excitation)操作:根据通道的依赖关系,基于门机制为每个通道学习特定的权重。
3、reweight操作:将E操作生成的每个通道的权重赋予原输出特征图 U U U,作为SE模块的输出。

SENet细节
SE(Squeeze-and-Excitation)模块

       \space\space\space\space\space\space        F t r F_{tr} Ftr记为一次卷积操作,将输入特征图 X ∈ R H ′ × W ′ × C ′ X\in\R^{H'\times W'\times C'} XRH×W×C转换为输出特征图 U ∈ R H × W × C U\in\R^{H\times W\times C} URH×W×C V = [ v 1 , v 2 , . . .

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值