01 本地化部署是GPT发展的一个趋势
我们提到大模型就想到这个东西不是我们普通人可以拥有的,因为太耗费服务器资源,注定了可以提供大模型服务的只能是大厂。
然而有需求就会有解决方案,那就是让大语言模型对特定地区的行业和专业领域有较强的知识储备,使其大而全,变为小而精。无论是医学、法律、金融还是其他行业,搭建专有的知识库解答问题、提供专业建议,就像一个行业内的专家。
本地化部署有以下几个优势:
1、数据完全私有化,降低数据丢失和泄露风险,对数据安全性和私密性有保障。
2、降低使用成本,不需要支付云服务商的订阅费用或按量计费。
3、提高使用灵活性,可以根据自己的需求定制大模型的功能和参数。
4、提高使用效率,不受网络延迟和稳定性的影响。
目前已经有许多支持本地化的大模型,我推荐几个开源的好用的项目:
02 RWKV-Runner
介绍:
RWKV是一个开源且允许商用的大语言模型,灵活性很高且极具发展潜力。
这个工具旨在降低大语言模型的使用门槛,做到人人可用,工具提供了全自动化的依赖和模型管理,你只需要直接点击运行,跟随引导,即可完成本地大语言模型的部署,工具本身体积极小,只需要一个exe即可完成一键部署。
此外,本工具提供了与OpenAI API完全兼容的接口,这意味着你可以把任意ChatGPT客户端用作RWKV的客户端,实现能力拓展,而不局限于聊天。
功能:
-
RWKV模型管理,一键启动
-
与OpenAI API完全兼容,一切ChatGPT客户端,都是RWKV客户端。启动模型后,打开 http://127.0.0.1:8000/docs 查看详细内容
-
全自动依赖安装,你只需要一个轻巧的可执行程序
-
预设了2G至32G显存的配置,几乎在各种电脑上工作良好
-
自带用户友好的聊天和续写交互页面
-
易于理解和操作的参数配置
-
内置模型转换工具
-
内置下载管理和远程模型检视
-
内置一键LoRA微调
-
也可用作 OpenAI ChatGPT 和 GPT Playground 客户端
-
多语言本地化
-
主题切换
-
自动更新
界面:
项目地址: https://github.com/josStorer/RWKV-Runner
03 ChatGLM3
介绍:
ChatGLM3 是智谱AI和清华大学 KEG 实验室联合发布的新一代对话预训练模型。ChatGLM3-6B 是 ChatGLM3 系列中的开源模型,在保留了前两代模型对话流畅、部署门槛低等众多优秀特性的基础上,ChatGLM3-6B 引入了如下特性:
1、更强大的基础模型:在语义、数学、推理、代码、知识等不同角度的数据集上测评显示,ChatGLM3-6B-Base 具有在 10B 以下的基础模型中最强的性能。
2、更完整的功能支持:ChatGLM3-6B 采用了全新设计的 Prompt 格式,除正常的多轮对话外。同时原生支持工具调用(Function Call)、代码执行(Code Interpreter)和 Agent 任务等复杂场景。
3、更全面的开源序列:在填写问卷进行登记后亦允许免费商业使用。
低成本部署:
-
模型量化:默认情况下,模型以 FP16 精度加载,运行上述代码需要大概 13GB 显存。如果你的 GPU 显存有限,可以尝试以量化方式加载模型。
-
CPU 部署:如果你没有 GPU 硬件的话,也可以在 CPU 上进行推理,但是推理速度会更慢。
-
Mac 部署:对于搭载了 Apple Silicon 或者 AMD GPU 的 Mac,可以使用 MPS 后端来在 GPU 上运行 ChatGLM3-6B。
-
多卡部署:如果你有多张 GPU,但是每张 GPU 的显存大小都不足以容纳完整的模型,那么可以将模型切分在多张GPU上。
界面:
一个集成以下三种功能的综合 Demo
1、Chat: 对话模式,在此模式下可以与模型进行对话。
2、Tool: 工具模式,模型除了对话外,还可以通过工具进行其他操作。
3、Code Interpreter: 代码解释器模式,模型可以在一个 Jupyter 环境中执行代码并获取结果,以完成复杂任务。
迭代版本:
项目地址: https://github.com/THUDM/ChatGLM3
04 Langchain-Chatchat
介绍:
以前叫Langchain-ChatGLM,基于 ChatGLM 等大语言模型与 Langchain 等应用框架实现,开源、可离线部署的检索增强生成(RAG)大模型知识库项目。
解决痛点:
该项目是一个可以实现 完全本地化推理的知识库增强方案, 重点解决数数据安全保护,私域化部署的企业痛点。本开源方案采用Apache License,可以免费商用,无需付费。支持市面上主流的本地大预言模型和Embedding模型,支持开源的本地向量数据库
界面:
1、对话界面
2、知识库管理界面
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
-END-
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓