VM“异常检测”模块

1、VM“异常检测”模块通过配准,进行轮廓比对判断OK/NG。

2、可用于多料、缺料、漏装零件、有无等检测

3、要求轮廓清晰、对比度明显。如果待检图与模板图轮廓差异大,则配准失败,注册失败

4、注意去除无关背景区域,保留ROI区域,否则会干扰检测结果。

5、创建检测模型时,第二步“设定检测区域”无特殊情况,最好不用自己绘制检测区域,否则配准时检测区域超出图像范围,则很容易报错。

 

### 海康威视VM软件中的缺陷检测方法与工具 #### 缺陷检测的功能特点 海康威视的VM算法开发平台集成了多种用于缺陷检测的方法和工具,旨在帮助客户快速构建并部署高效的视觉检测解决方案[^1]。 #### 主要使用的工具和技术 - **模板匹配技术**:通过预先设定的标准样本作为模板,在待检产品上寻找最相似的部分来判断是否存在异常。 - **灰度分析**:基于像素级别的亮度变化来进行表面瑕疵识别,适用于颜色均匀的产品表面质量控制。 - **边缘提取与形态学操作**:利用物体轮廓特征差异捕捉细微结构上的破损情况,如裂纹、划痕等。 - **分类器训练**:支持用户导入带有标签的数据集以建立特定类型的缺陷模型,从而提高自动判别的准确性。 对于具体的实施过程而言: ```python import cv2 from hikvision_vm import DefectDetectionTool # 假设这是Hikvision VM提供的Python接口库 def detect_defects(image_path): image = cv2.imread(image_path) detector = DefectDetectionTool() result = detector.detect(image) return result ``` 此段伪代码展示了如何调用假设存在的`hikvision_vm`库下的`DefectDetectionTool`类完成一次简单的缺陷检测流程。实际应用中可能涉及更复杂的配置选项调整以及预处理步骤。 #### 平面检测模块的应用场景扩展至缺陷检测 除了上述通用手段外,针对某些特殊需求还可以借助于专门设计好的子模块——例如平面检测模块能够有效评估目标区域内小面积平坦程度的变化趋势,进而发现诸如凹凸不平等潜在质量问题[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值